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ABSTRACT 

Production of aldeiiyde oxidase (aldehyde:02 oxidoreductase, EC 

1.2.3.1) by Streptomyces setonii 75Vi2 and Streptomyces viridosporus T7A 

was characterized. For 5. setonii, aldehyde oxidase was initially induced in 

shake-flask culture in 0.6% (w/v) yeast extract medium. Inducer (propanal) 

concentration was determined to be 1.6 g/L medium and two propanal 

additions generated the best results. Inducer addition to cells in late-log phase 

was essential to enzyme induction. Dissolved oxygen and pH measurements 

were key parameters for determination of late-iog phase in 15-L and 50-L batch 

fermentation. Aldehyde oxidase activity was 0.02 units (one unit was defined 

as 0.1 /;mole/min/mg protein) in shake-flask and CSR cultures, and 0.05, 0.1, 

and 0.21 units in 5-L, 15-L, and 50-L batch fermentations, respectively. 

However, with propanal or frans-cinnamaldehyde (aromatic aldehyde) as 

inducer, aldehyde oxidase production by S. setonii was inconsistent and not 

reproducible. 

For S. viridosporus, vanillin (2 g/L medium) was used as inducer in 50-L 

fermentations in 0.6% (w/v) yeast extract and 1.0% (w/v) malt extract 

medium. Vanillin was a stable enzyme inducer and its oxidation to vanillic acid 

was monitored spectrophotometrically at 345 nm. Aldehyde oxidase activity 

was more stable in S, viridosporus than S. setonii and freeze-dried cell-free 

extract extended its shelf-life. Propanal oxidation to propionic acid by aldehyde 
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oxidase was confirmed by HPLC for the 30% ammonium sulfate precipitate 

from a cell-free extract, Oxygraphic enzyme activity measurement did not 

always correlate with acid production due to interference of endogenous 

catalase but oxygraph was beneficial for rapid aldehyde oxidase detection. 

Crude cell-free extract, 45% ammonium sulfate precipitate and heat-

treated (70°C) for 5 and 10 min of crude extract revealed positive aldehyde 

oxidase activity as shown by brown color formation on nondenaturing 

polyacrylamide gel electrophoresis (PAGE) zymogram with vanillin as the 

substrate. This same band from the nondenaturing PAGE demonstrated two 

broad protein bands on SDS-PAGE which corresponded to peptides of 20 and 

55 kDa. These bacterial oxidases were active toward propanai, hexanal, trans-

cinnamaldehyde, and vanillin, which suggests its possible use to reduce off-

flavors in soy products. 
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INTRODUCTION 

Soybeans (Glycine /nax.(L.)) originated in Eastern Asia. Soybeans were 

used as food long before the existence of written records (102), and they were 

introduced into the United States in the early 1800s (103). For the 1992/1993 

production year, worldwide soybean production was 116 million metric tons 

and 60 million metric tons in the United States, which accounts for 52% of 

world production (104). 

Soybean oil, meal, and protein are major products from soybeans. 

Soybean oils are widely used in coolcing oils, salad oils for edible use, and in 

soap, printing inks, and plasticizers for non-food industrial use (104). Also, 

soybean meal products such as soy flour (products intended for human use), 

soy concentrates (containing at least 70% protein), and soy isolates (containing 

at least 90% protein) are used in bakery ingredients, meat products and 

cereals, and in adhesive, paints, and plywood (104). Today, the major 

industrial market for soy protein is in paper coatings (54). 

Proximate chemical composition of soybeans varies depending on the 

variety and the growing conditions. On an average, soybeans are 40% protein, 

20% lipid, 35% carbohydrates, and 5% ash on a dry weight basis (103). 

Human consumption of this protein-rich food is limited due to some off-

flavors, which are associated with lipid oxidation by lipoxygenase activity. 
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Some volatile components of soybeans, flours, concentrates, isolates, and 

textured soy proteins have been identified (73). Hexanal, a product of lipid 

oxidation is one of the compounds that demonstrates very low threshold to 

sensory evaluation (30). Investigation of hexanal and soy protein interactions 

suggested that structural changes in protein might occur due to hexanal binding 

to soy proteins, which might prevent this off-flavor removal (104). 

Several methods were reported to inactivate lipoxygenase (3, 11, 105, 

114). However, soy protein functionality alteration could be another problem. 

Enzymatic removal by alcohol dehydrogenase (71), aldehyde dehydrogenase 

(21), and bovine aldehyde oxidase (115) were attempted and none was 

practically successful. Bacterial source of aromatic aldehyde oxidase was 

reported by Deobald and Crawford (29). No researchers to date, however, 

have attempted production of bacterial aldehyde oxidase for possible use in off-

flavor removal in soy products. 

Research Objectives 

The main objective of this research was to optimize aldehyde oxidase 

production by Streptomyces species in 50-L batch fermentations for removal of 

off-flavors from soy products. The specific objectives were: 1) to determine 

enzyme induction protocol for consistent aldehyde oxidase production (i.e., 

culture growth phase for enzyme induction, identify the best inducer, number 
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of inducer additions, the concentration of inducer added, the need for pH and 

dissolved oxygen control by the fermentor, and the inoculum type used [spore 

vs. vegetative cells]); 2) to scale-up enzyme production to 50-L fermentations 

(i.e., cell harvest, cell disruption, and recovery of cell free extracts); 3) to 

develop reliable enzyme assays for aldehyde oxidase detection (i.e., oxygraph, 

spectrophotometric, and/or chromatographic methods); and 4) to partially purify 

by ammonium sulfate and characterize the aldehyde oxidase produced by two 

Streptomyces species (i.e., ammonium sulfate precipitation, extract shelf-life, 

native- and SDS-polyacrylamide gel electrophoresis). 

Literature Review 

Soybeans processing 

This soybean processing section is summarized from Chapter 3 (p74-

p144) by Snyder and Kwon (103). Soybean processing involves all the steps 

necessary to make whole beans to final products. 

Preparation. Soybeans are cleaned, dried and cracked to separate 

hulls. These dehulled soybeans are processed to produce soybean meat, which 

is conditioned by heating before flaking. 

Flaking. The conditioned soybean meat is processed through smooth 

rollers, thus it facilitates the extraction process. Excess moisture is removed 

and the material is cooled before solvent extraction. 
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Solvent extraction. Oil is separated from meal fraction by solvent 

extraction. Currently, hexane is widely used as the solvent. 

Oil refining. The term 'refining' refers to all the steps needed to 

produce the crude soybean oil. The refining steps include degumming, alkali 

refining, bleaching, hydrogenatlon, winterization, and deodorization. 

Phospholipids and free fatty acids are removed in degumming and alkali-refining 

step, respectively. Colors, as well as flavor compounds are removed in 

bleaching, and hydrogen is added to polyunsaturated fatty acids to improve 

texture and flavor stability. Winterizing makes oil clear when it is stored at cold 

temperature. Finally, unwanted flavor and other compounds are removed 

before packaging. 

Protein products. Soybean meal is the major protein from defatted 

soybean flakes. The meal containing hulls has a minimum of 44% protein. 

Product intended for human use are called soybean flour or soybean grits. Soy 

protein concentrate contains a minimum of 70% protein on a dry-weight basis. 

It is produced by removing soluble carbohydrates. Soy protein isolates contain 

more than 90% protein. 

Soybean proteins 

Soybeans have a relatively high content of protein (38-44%) compared 

with other legume species (20-30%) (103). Glycinin (IIS) and R-conglycinin 

(75) are the major proteins found in soybeans. Glycinin comprises about 50% 
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of total seed protein and fi-conglycinin comprises about one third of extractable 

proteins in soybeans (79). The amounts of glycinin and &-conglycinin in soluble 

soy protein (55-75% of total seed protein) in 12 soybean varieties averaged 51 

and 18.5%, respectively (78). 

Glycinin. Hughes and Murphy (49) investigated 10 soybean varieties 

and total protein content ranged from 39.4 to 44.1 % and the content of 

glycinin was 31.4 to 38.3% total protein. Catsimpoolas (18) initially suggested 

that glycinin consists of six subunits with three acidic and three basic 

components. Glycinin has a molecular weight of 320 kDa (5) and consists of 

12 polypeptide components, six acidic subunits and six basic subunits, which 

are packed into two identical hexagons. Staswick et al. (108) demonstrated 

that acidic and basic components of the glycinin subunits are specifically linked 

with cysteines. These disulfide bonds were formed from the precursor post-

translationally (8, 109). Turner et al. (123) purified mRNA of glycinin and found 

that pre-glycinin is formed as a precursor, followed by post-translational 

modification to produce mature glycinin. Acidic and basic components are 

produced from a single mRNA. Glycinin precursors have N-terminal leader 

sequence followed by the acidic peptide component then the basic polypeptide 

component (123). The amino acid sequences of the acidic and basic 

components of the AjB^, subunit of glycinin were determined as 278 amino 

acids (31.6 kDa) of acid subunit and 180 amino acids (19.9 kDa) of basic 

component (107). Also, Hirano et al. (47) determined the amino acid sequence 
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of the A3 subunit, an acidic subunit of the glycinin, is 410 amino acids and 46 

kDa. mRNA of glycinin A3B4 subunit was sequenced by Fukuzawa et al. (37) 

and they found that glycinin is synthesized as a precursor polypeptide which 

undergoes post-translational cleavage to form the nonrandom polypeptide pairs 

via disulfide bonds. Amino acid sequence analysis indicates that there is a 

considerable homology between the acidic and basic polypeptide of individual 

families of acidic and basic polypeptides, suggesting that the members of each 

family arose from a common ancestral gene (75). Nielsen et al. (80) found that 

the glycinin gene structures are highly conserved. They studied five glycinin 

genes which illustrated 80 to 90% homology among members of the same 

subfamily, whereas percent homology between members of different groups 

was less than 50%. 

&-Conglycinin. K-Conglycinin, a trimer, has a molecular weight range 

of 150-175 kDa (117). There are three kinds of subunits with the designations 

a, a', and R for S-conglycinin (117) and all are glycoproteins (119). All three 

subunits are rich in aspartate and/or asparagine, glutamate and/or glutamine, 

leucine and arginine, and low levels of methionine, which is associated with 

both a and a\ whereas the & subunit has none (79). Beta subunit is devoid of 

cysteine and methionine, and a, a' subunits have a higher content of 

hydrophobic amino acids (118). Koshiyama (58) reported that fi-conglycinin is 

in 7S form in 2 components when pH is lower than pi at // (ionic strength) <0.1 

M, and R-conglycinin is in the mixture of 7S and 9S form when // is between 
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0.1 and 0.5 M, and stable 7S form when p>0.5 M. libuchi and Imahori (51) 

studied the sedimentation coefficient of S-conglycinin which varies with ionic 

strength; li-conglycinin exists as dimer (10S) when // is 0.1 M, and as monomer 

(7S) at n of 0.5 M. 

Nutritional value. The major proteins in soybean products are glycinin 

and l^-conglycinin. Therefore, the nutritional value of soybean products with 

respect to protein is determined by the quantity and quality of these proteins. 

Some amino acids in soybean proteins are shown in Table 1. 

The sulfur-containing amino acids in soy protein are limiting (Table 1), 

and digestibility is high when soybeans are properly processed (103). Both the 

quantity and quality of soybean protein are factors that make it the protein of 

choice for animal feedstuffs. Dehulled soy flakes are sold at 47.5 to 49.0% 

minimum protein content, and soybean flakes with ground hulls added have a 

44% protein minimum (103). 

There are many soybean-based foods (fermented or nonfermented) which 

are consumed in many Asian countries. Tofu is one of the traditional 

nonfermented foods as well as soy sprouts, soymilk, and soyfilm. Some 

fermented foods are soy sauce, soy paste, fermented soy curd and fermented 

soy pulp, which are under many different names for the same commodity by 

different major consumers (103). 

Off-flavors. Off-flavors, expressed as beany or grassy, are major 

obstacle to increased human consumption, which are probably produced by 
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Table 1. Average amino acid content of soybean proteins and Food and 
Agriculture Organization (FAOIA/Vorld Health Organization (WHO) 
requirement (N X 6.25) 

Amino acid Soybean' FAO/WHO" 

Histidine 25 -

Isoleucine 45 40 

Leucine 78 70 

Lysine 64 55 

Methionine + cystine 26 35 

Phenylalanine+tyrosine 80 60 

Threonine 39 40 

Tryptophan 13 10 

Valine 48 50 

'Source: Bod well and Hopkins (10). 

"Source; Steinke (110). 

lipoxygenase activity. Matoba et al. (69) suggested that n-hexanal is 

enzymatically generated through 13-hydroperoxide from free linoleic acid, but 

not from bound linoleic acid such as glycerides and phospholipids. Arai et al. 

(2) reported that n-hexanal is from degradation of hydroperoxides derived from 

c/s,c/s-linoleic acid or its ester. Volatile flavor constituents of defatted soy flour 
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were identified as 2-pentyl furan and ethyl vinyl ketone. These compounds are 

responsible for soybean characteristic beany, grassy, and green odors (48). 

Mattick and Hand (72) identified ethyl vinyl ketone causes "green bean like" 

odor by distillation and compared it with soymilk isolate. Endo et al. (31) 

reported that 10-oxo-8-octadecenoic acid, 10- and 9-hydroxy octadecanoic acid 

are components that cause flavor reversion. Some other off-flavor components 

are listed in Table. 2. 

n-Hexanal is one of the major products from autoxidized soybean oil that 

can generate off-flavor in very small amounts. Flath et al. (34) reported that 

threshold of hexanal and 2-hexenal are 5 and 17 ppb, respectively. However. 

Eriksson et al. (32) showed that odor detectability (threshold) is 5 ppm for n-

hexanal, 19 ppb for n-hexenal, and 316 ppb for f/-aA)s-2-hexenal. Also, Dixon 

and Hammond (30) reported different threshold values of hexanal (6 ppm), 

hexenal (10 ppm), and r,r,2,4-hexadienal (3 ppm). 

Lipoxygenase catalyzes lipid oxidation, which combines molecular 

oxygen with polyunsaturated fatty acids to yield hydroperoxide. Lipoxygenases 

have a major role in production of off-flavors and there are three lipoxygenases 

present: L-1, L-2, and L-3. L-1 has higher pH optimum than L-2 and L-3, and It 

is more reactive with free fatty acids than esterified fatty acids. Recessive 

mutants of L-1 could reduce volatile carbonyl compounds (45). 

Davies et al. (28) reported that the removal of L-2 improved flavor of 

soybean (i.e., it significantly lowered scores of beany, rancid, and oily flavor). 
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Table 2. Some volatile components of soybeans, flours, concentrates, 
isolates, and textured soy proteins" 

Class Compounds 

Aldehydes 

Ketones 

Alcohols 

Alkanals: CI, C2, C3, C4, C5, C6, C7, C8, C9, CIO 

Alkenals C5, C6, C7, C8, C9 

Alkenals A"; CIO 

Dienals A^'': C6, C7, C8, C9, CIO, C11 

Others: methylpropanal, 2-methylbutane, 3-methylbutane 

1-Alkanones: C3, C4 

2-Alkanones: C5, C6, C7, C8, C9, CIO 

3-Alkanones: C8 

5-Alkanones: CIO 

Unsaturated: butenone, 1-pentene-3-one, 3-octene-2-
one, 3-nonene-2-one, 3,5-octadiene-2-
one, butadione 

Saturated: methanol, ethanol 

Unsaturated: 1-propanol, 2-propanol, 1-butanol, 2-
butanol, 1-pentanol, 2-pentanol, 3-
pentanol, 1-hexanol, 2-hexanol 

Hydrocarbons Saturated: C3, C4, C6, C8, CIO, C15, C17 

Unsaturated; C6, 1,4-pentadiene, 1,3-octadiene, 
cyclohexane 

Carboxylic acid: C2, C3, C5, C6, C8, C9, CIO 

Other lactones, ethyl esters, benzene, toluene, benzaldehyde, 
compounds benzyl alcohol 

'Source: McLeod and Ames (73). 
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Also, Grosch and Laskawy (43) found that the neutral lipoxygenases L-2 and L-

3 form both a greater quantity and a greater range of volatile carbonyl 

compounds than does the alkaline isoenzyme L-1. 

Matoba et al. (70) studied lipoxygenase deficient mutants (null) of 

soybeans and reported that the level of n-hexanal was the lowest In the L-2 null 

homogenate and the highest in the L-1, L-3 null homogenate. Thus, they 

claimed that L-2 isozyme is responsible for n-hexanal formation by using free 

linoleic acid as the substrate. On the other hand, Hildebrand et al. (46) 

demonstrated that hexanal concentration was reduced when L-3 isozyme was 

added. Their results suggested that nonvolatile ketodienes of hexanal were 

formed with linoleic acid or 13-hydroxyperoxy-9,11-octadecanoic acid. This 

indicated that L-3 isozyme may reduce hexanal yield in soybean seed by 

competing with L-1 and L-2 for the available fatty acids or fatty acid 

hydroxides. 

Other researchers (125) reported that L-1 isozyme is most effective in 

the hydroperoxidation of free fatty acid, whereas L-2 and L-3 are relatively 

more effective in the hydroperoxidation of esterified or neutral fatty acid. Also, 

they found that L-2 isozyme is largely responsible for the generation of C6 

aldehydes with most of the substrates tested and that the soybean line with L-

3 reduced hexanal formation. Whereas, free linoleic acid yielded the highest 

relative levels of C6 aldehyde with L-2 isozyme, and its lipid-dependent O2 

uptake was lower than or similar to that of many other compounds. 
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Off-flavors and soy protein interactions. In spite of the progress 

made in understanding the mechanisms of off-flavor components formation in 

soy materials, the soy flavor problem remains. Understanding the ability of 

proteins to bind certain components that affect food aromas is important to the 

food industry. Understanding the different mechanisms of interaction between 

flavors and proteins is vital for increased utilization of soybeans (73). 

There are two different approaches to studying flavor binding to soy 

protein. One is gas/solid interactions and the other is gas/liquid interactions. 

Arai et al. (2), using vacuum distillation and gel filtration technique, showed 

that the concentration of hexanal and 1-hexanol increased with increasing 

protein denaturation. Hexanal binds more strongly than does hexanol; this was 

attributed to hydrophobic interactions between protein and flavor compounds. 

Franzen and Kinsella (37) examined the binding of some aldehydes and 

ketones by different forms of soy proteins with headspace gas chromatography 

analysis techniques. The presence of soy protein in the aqueous systems 

increased the retention of volatile components in all samples. Interactions were 

thought to be due to surface area and solubility effects. It was suggested that 

reactions between the protein and the aroma components were also involved. 

Gremli (42) studied the effect of adding certain compounds to soy 

protein isolate in an aqueous medium, in which aldehydes strongly reacted with 

the soy protein, but alcohols did not. The interaction was reversible and/or 

irreversible and was due to chemical reactions and/or physical sorption. 
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However, aldehydes bind strongly to soy protein, followed by ketones and 

alcohols, whereas carboxylic acids showed no binding (9). 

Crowther et al. (25) studied the effect of thermal processing on the 

binding properties of "dry" soy protein in nonaqueous systems. Based on their 

heat of adsorption data, it was observed that alcohols bind strongly to "dry" 

soy protein, whereas aldehydes and ketones bind less. Furthermore, 

adsorption and binding heat-coefficients escalated with increasing hydrocarbon 

length due to expanded van der Waals interactions. Aspelund and Wilson (4) 

confirmed this observation and suggested that aldehydes, ketones, and methyl 

esters bind to soy protein via one hydrogen bond plus van der Waals forces. 

Damodaran and Kinsella (27) studied the interaction of carbonyls with 

soy protein by using an equilibrium dialysis method which equilibrates soy 

protein with solution containing carbonyls (e.g. 2-octanone, 2-nonanone, 5-

nonanone, and nonanal) separated by dialysis membrane. They showed that 

there were about four binding sites for each ligand in the soy protein, assuming 

a molecular weight of 100 KDa. However, they used 2-nonanone as a model 

compound, which is not an off-flavor component (23, 82, 93). 

O'Keefe et al. (82) performed the thermodynamic binding study of 

purified glycinin and R-conglycinin in aqueous system with butanal, pentanal, 

hexanal, octanal, 2- and 3-hexanone, 2- and 5-nonanone, hexanol, and hexane. 

All flavor ligands bound better to glycinin than K-conglycinin. Affinity for 

aldehydes increased with increasing chain length for glycinin, but was constant 
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for K-conglycinin. O'Keefe et al. (83) also investigated the equilibrium binding 

of hexanal to soybean glycinin and H-conglycinin. The numbers of binding sites 

for hexanal to glycinin and li-conglycinin were 108 and 26, respectively. It 

was suggested that structural changes might occur due to hexanal binding. 

Cooray (22) studied ^"^C-heptanal binding to purified glycinin and IS-conglycinin. 

^'^C-Heptanal binding to soy proteins was not completely reversible due to 

presence of tightly bound ligands. 

Soybean flavor improvement. Soybean is a good protein source for 

the human diet. Furthermore, tocopherols found in soybeans have illustrated 

some anticancer properties (73). Human consumption, however, is limited due 

to the off-flavors. Attempts to remove or mask these off-flavors continue to be 

made. 

Borhan and Snyder (11) treated whole soybeans with heat and ethanol to 

inactivate lipoxygenase and suggested that useful ranges were 15 to 45% 

ethanol, 40 to 60®C, and 2 to 6 hr treatment. Ashraf and Snyder (3) studied 

soymilk prepared from soybeans soaked in 15% ethanol and in 15% ethanol 

with 0.1 M NaOH, 0.1 M Na2C03 or 0.1 M NaHCOg for various times at 60°C. 

Soaking in 15% ethanol with 0.1 M NaHCOg for 4 hr did minimize off-flavor. 

Srinivas et al. (105) investigated sensory and physicochemical characteristics 

of soy meal prepared from second extraction of soy flakes, using hexane 

containing 3 or 5% acetic acid and compared with those of hexane-extracted-

only meal. Hexane containing 5% acetic acid treatment demonstrated total 
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inactivation of lipoxygenase, but solubility was reduced compared to hexane-

extracted meal. Swamylingappa and Srinivas (114) prepared soy protein isolate 

from commercial soy meal treated with hexane containing 3% acetic acid at 28 

and 58°C. Off-flavor was reduced by 66% in treated isolates. 

Lecomte et al. (62) reported that reduction in soybean off-flavor was 

observed when soy proteins were incorporated in frankfurters formulation, 

probably due to physical masking. They suggested that soy protein addition 

could improve functionality and sensory characteristics of comminuted meats. 

Matoba et al. (71) reported that n-hexanal in soybean homogenates 

decreased during incubation at alkaline pH. They suggested that n-hexanal was 

converted to n-hexanol by alcohol dehydrogenase in alkaline pH and enzyme 

reduction was stimulated by NADH and NADPH addition. Takahashi et al. 

(115) studied enzymatic removal of soybean off-flavors using bovine liver 

aldehyde oxidase. Aldehyde oxidase removed the beany odor of the raw 

soybean extracts through aldehydes oxidation. Aldehyde oxidase-catalyzed 

reaction was almost undetectable in the initial period of incubation when 

soybean protein-bound aldehyde was used as the substrate. However, 

soybean protein-bound aldehyde was oxidized during prolonged incubation. 

Aldehyde oxidase was less efficient in the oxidation of soybean protein-bound 

aldehydes than bovine mitochondrial aldehyde dehydrogenase (21). Enzymatic 

off-flavor removal could be a desirable method in that it is simple and specific. 

Also, it may not affect protein functionality while removing soy protein-bound 
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aldehydes. Some characteristics of aldehyde oxidase are followed in next 

section. 

Aldehyde oxidase 

Aldehyde oxidase is an oxidoreductase that catalyzes the reaction in 

which aldehydes are converted to their corresponding acids. It requires 

molecular oxygen as an electron acceptor and the Enzyme Commission (EC) 

number is E.C. 1.2.3.1. A generalized reaction is: 

R-COH + HjO + O2 ---> R-COOH + HjOg 

Known sources of enzyme. Aldehyde oxidase was first isolated from 

porcine liver in 1940 when it was tentatively identified as flavoprotein by 

Gordon et al. (39). The enzyme has also been obtained from various animal 

sources such as rabbit liver (7, 13, 33, 40, 44, 58, 59, 94, 95, 116, 120), 

equine liver (17), bovine liver (15, 115), porcine liver (33, 50, 67, 84, 85, 96), 

guinea pig liver (124), rat liver (20, 76, 81, 99, 106) and human liver (100, 

106). In addition, Krenitsky et al. (59) isolated aldehyde oxidase from wide 

variety of animals such as sea anemone, planaria, cat, earthworm, mealworm, 

lobster, oyster, snail, frog, snake, turtle, pigeon, dog, cow, and monkey. Large 

and Connock (61) studied aldehyde oxidase from three species of terrestrial 

gastropod. Aromatic aldehyde oxidase from microbial source, Streptomyces 

viridosporus T7A, was reported by Crawford et al. (24). Also, aliphatic 

aldehyde oxidase from Pyrococcus furiosus was reported by Mukund and 
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Adams (77). 

Characteristics of enzyme. 

Structure and size. Cabr^ and Canela (15) reported that bovine 

liver aldehyde oxidase MW was 222 kDa by gel filtration and pi was 7.0 by 

titration curve. FAD content was 0.72 mol per mole enzyme. 

Yoshihara and Tatsumi (124) reported that guinea pig liver aldehyde 

oxidase MW was 348 kDa by gel filtration and 300 kDa by native 

polyacrylamide gel electrophoresis (PAGE). They also found 148 and 134 kDa 

bands on SDS-PAGE similar to rabbit liver aldehyde oxidase. FAD content was 

2.1 mole, whereas 8.5 g atoms of iron, and 1.0 g atom of molybdenum per 

mole of the native enzyme was detected. Moriwaki et al. (76) reported that rat 

liver aldehyde oxidase MW was 270 kDa by PAGE. 

Felsted et al. (33) reported that rabbit liver and hog liver aldehyde 

oxidase MW were 270 and 268 kDa, by sedimentation equilibrium studies, and 

270 and 260 kDa, by gel filtration, respectively. Both enzymes will 

spontaneously polymerize into higher MW species and the aggregation 

appeared to be concentration-dependent. The molecular weights for the major 

polymers were 460 and 540 kDa. Complete reversal as well as the prevention 

of the polymerization of both enzymes was achieved with thiol reagents such 

as mercaptoethanol, glutathione, and dithiothreitol at concentration of 60, 1.6, 

and 1.6 mM, respectively, and cysteine was also found to be effective at a 

concentration of 5 mM. Tomita et al. (120) reported that rabbit liver aldehyde 



www.manaraa.com

18 

oxidase MW was 270 kDa by SDS-PAGE and was composed of Identical 

dimers. Also, Maheshwari (66) purified two aldehyde oxidase from porcine 

liver using affinity chromatography and molecular weights of two isozymes 

were 262 and 255 kDa, respectively. 

Deobald and Crawford (29) reported that bacterial aromatic aldehyde 

oxidase from Streptomyces viridosporus T7A had a molecular weight of 80 kDa 

as determined by nondenaturing polyacrylamide gel electrophoresis (PAGE). 

Mukund and Adams (77) reported that hyperthermophilic aldehyde oxidase 

from Pyrococcus furiosus had a MW of 80 and 90 kDa by SDS-PAGE and gel 

filtration, respectively, and the same enzyme was crystallized by Chan et al. 

(19). 

As illustrated above, aldehyde oxidase from animal sources is about three 

times larger than that from the bacterial sources. Thus, bacterial aldehyde 

oxidase could be more accessible to soy proteins that are 160 and 320 kDa in 

size. 

Mahler et al. (67) found that FAD and iron component were present in 

pig liver aldehyde oxidase, and showed molybdenum content is 0.5 g atom per 

mole of flavin. On the other hand, Palmer (84) reported that flavin content of 

aldehyde oxidase from pig liver was 5 nmoles per mg of protein and 

molybdenum content was 1 to 2 nmoles per mg of protein. 

Felsted et al. (33) found 2.03 moles of FAD, 7.92 g atoms of iron, and 

molybdenum content ranged from 0.66 to 1.14 g atoms per mole of rabbit 
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enzyme. Rajagopalan et al. (96) reported that 2 molecules of FAD, 8 atoms of 

iron, 2 atoms of molybdenum, and 1 or 2 molecules of coenzyme Q^Q present 

per molecule of rabbit liver aldehyde oxidase. 

Substrate specificities. Major substrates in the review are 

illustrated in Fig. 1. (15, 17, 24, 39, 96). A systematic work on aldehyde 

oxidase specificity toward aliphatic or aromatic aldehydes has not been 

reported. Some aldehyde oxidase catalyzed aliphatic aldehydes at higher rate 

than aromatic aldehydes. Thus, the enzymes could be divided into two groups 

depending on substrate specificity. It is a tentative classification of following 

enzymes because it may not be definite until a variety of substrates are tested. 

Aliphatic aldehyde oxidase. Gordon et al. (39) found 

that increase in carbon chain length of substrate decreased the catalytic 

velocity by pig liver enzyme. Substrate preference by the enzyme was highest 

for acetaldehyde followed by crotonaldehyde, benzaldehyde, propanal, butanal, 

glycolic aldehyde, and salicylaldehyde. In addition, Cabrd and Canela (15) 

reported that propanal was preferably catalyzed by aldehyde oxidase from 

bovine liver, followed by furfural (67% compared with propanal as 100%), 

acetaldehyde (45%), benzaldehyde (32%), crotonaldehyde (26%), 

chloroacetaldehyde (16%), and formaldehyde (9%). Mukund and Adams (77) 

investigated aldehyde oxidase from Pyrococcus furiosus and crotonaldehyde 

showed the highest in specific activity (27 units; 1 international unit was 

defined as//mole substrate oxidized/min/mg protein), followed by acetaldehyde 
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Figure 1. Structure of some substrates for aldehyde oxidase 
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Figure 1. (continued) 
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(19 units), formaldehyde (9.2 units), butyraldehyde (7.4 units), and 

giyceraldehyde (4.8 units). 

Aromatic aldehyde oxidase. Carpenter (17) used 

formaldehyde, acetaldehyde, heptaldehyde, furfural, salicylaldehyde, 

paraldehyde, benzaldehyde, and crotonaldehyde as substrates for horse liver 

enzyme. Salicylaldehyde and furfural were catalyzed at higher rates than other 

substrates. On the other hand, Crawford et al. (24) reported that m-

hydroxybenzaldehyde was oxidized at highest rate, followed by salicylaldehyde, 

vanillin, and benzaldehyde by bacterial aldehyde oxidase from Streptomyces 

viridosporus T7A. Large and Connock (61) tested several aromatic aldehydes 

as substrates for three species of terrestrial gastropod, and found that 

benzaldehyde was used at highest rate, followed by 3-methylbenzaldehyde, 3-

methoxybenzaldehyde, cinnamaldehyde, veratraldehyde, and salycylaldehyde. 

Rodrigues (100) tested benzaldehyde for human liver aldehyde oxidase and 

average activity was 22.4 ± 10.4 nmole/min/mg protein from 6 samples. 

Other aldehyde oxidase. Krenitsky et al. (58) 

investigated some purine, pyrimldine and their derivatives as substrates for 

rabbit liver aldehyde oxidase. The numbers in parenthesis for the following 

substrates are relative rate compared with that of purine as 100%. 6-

Cyanopurine (280%) was highest among C-monosubstituted purine, followed 

by 2-hydroxypurine (140%), and 6-purinecarboxamide (94%). Other purine 

derivatives are 6-methylpurine (82%), 6-chloropurine (56%), 6-bromopurine 



www.manaraa.com

23 

(58%), 6-iodopurine (32%), 2-aminopurine (38%), and 2-mercaptopurine 

(43%). 2-Hydroxypyrinnidine (280%) was highest for pyrimidine derivatives 

followed by 4-hydroxypyrimidine (134%) and 2-methylpyrimidine (18%). On 

the other hand, 3-methylhypoxanthine (710%) was highest for N-substituted 

purines followed by 7-methyladenine (68%) and 1-methylhypoxanthine (34%). 

Generally, C-monosubstituted purines were good substrates for rabbit liver 

aldehyde oxidase and C-disubstituted purines were not good for the enzyme. 

The oxidation rate of these hydroxyl derivatives were lower compared with 

those of the parent unsubstituted compounds, except with pyrimidine itself and 

6-substituted purines. Overall, aldehyde oxidase hydroxylated these 

substrates. 

Felsted et al. (33) found that rabbit and hog livers aldehyde oxidase 

catalyzed the oxidation of N^-methylnicotinamide to both N^-methyl-2-pyridone-

5-carboximide and N'-methyl-4-pyridone-3-carboximide in a ratio (2-pyridone to 

the 4-pyridone) of 100 to 3.8 for rabbit and 3.8 for hog enzymes, respectively. 

Also, Stanulovid and Chaykin (106) showed that aldehyde oxidases from 

human liver and rat liver catalyze N^-methylnicotinamide to the formation of N^-

methyl-2-pyridone-5-carboximide and N'-methyl-4-pyridone-3-carboximide. 

Rajagopalan et al. (96) also reported that the purified rabbit liver 

aldehyde oxidase was found to oxidize acetaidehyde and salicylaldehyde, as 

well as N^-methylnicotinamide and quinine. Rajagopalan and Handler (95) 

found N^-methylnicotinamide, N-methylquinolinium, N-ethylquinolinium, 
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phenazine methosulfate, 7-methylhypoxanthine, purine, quinoline, 

acetaldehyde, and salicylaldehyde could serve as substrates for rabbit liver 

aldehyde oxidase. 

Hall and Krenitslcy (44) tested many purines (66 compounds) and 

pyrimidines (26 compounds) as substrates for rabbit liver aldehyde oxidase. 

These will be discussed in the next section. 

Kinetics. Palmer (85) reported that kinetic mechanism was 

noncompetitive for pig liver aldehyde oxidase when double reciprocal plot of 

acetaldehyde versus cytochrome C was drawn, using cytochrome C as one 

substrate and acetaldehyde as the second substrate. He found ternary complex 

formation with independent binding of each substrate. 

Takahashi et al. (115) reported that Kp, values for n-hexanal and 

acetaldehyde were 6 //M and 20 mM, respectively, when reacted with bovine 

liver aldehyde oxidase. On the other hand, Gordon et al. (39) reported the 

value of 7 mM for crotonaldehyde with pig liver enzyme. 

Knox (56) reported K^ values of 17 and 0.17 mM for crotonaldehyde and 

quinine, respectively, when catalyzed by rabbit liver aldehyde oxidase. On the 

other hand, Felsted et al. (33) reported that the K^, of the rabbit aldehyde 

oxidase for N^-methylnicotinamide was found to be 0.66 and 0.36 mM for hog 

liver enzyme. 

Mukund and Adams (77) reported that the apparent and K„ values 

were 10.5 units and 1.0 mM for glyceraldehyde at 65®C, whereas, and K„ 
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values were 67 units and 40 //M for crotonaldehyde at 80*'C. Large and 

Connock (61) reported the apparent K^, for benzaldehyde were 1.8, 11.5, and 

5.6 //M for three species of terrestrial gastropod. 

Palmer (84) reported and K„ values for several aldehydes as 

substrates for pig liver enzyme (Table 3). Butyraldehyde and 2-methyl 

butyraldehyde have highest (//mole aldehyde oxidized/min/mg protein) 

value of 20.6, followed by 2-ethylbutyraldehyde (V^,^ 10.0) and propanal (V^.^ 

8.7), whereas valeraldehyde and 2-ethylbutyraldehyde have lowest value of 

1.25 mM, followed by heptaldehyde (1.3 mM) and crotonaldehyde (6.7 mM). 

The values of other aldehydes are in Table 3. 

Aldehyde oxidase from various sources demonstrated a broad substrate 

specificity for both aliphatic and aromatic aldehydes. Bovine liver aldehyde 

oxidase had a higher affinity to hexanal than did acetaldehyde (115). 

Therefore, it could be very useful to use aldehyde oxidase in removal of some 

soybean off-flavors because hexanal gives a major contribution. 

Inhibitors. Palmer (85) observed that 1,10-phenanthroline 

inhibits pig liver enzyme in partially competitive manner and found that the 

inhibitor bound adjacent to the substrate binding site. On the other hand, 

Takahashi et al. (115) found that menadione (3.3 //M) and Triton X-100 (800 

^M) exhibit inhibition to bovine liver enzyme, and Banks and Barnett (7) 

reported that potassium cyanide (0.2 mM) is inhibitor for rabbit liver aldehyde 

oxidase. 
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Table 3. and K„ values for various aldehydes for pig liver aldehyde 
oxidase* 

Substrate V '' ^ max K„ (mM) 

formaldehyde 1.7 380 

acetaldehyde 7.9 100 

propanal 8.7 30 

butyraldehyde 20.6 25 

valeraldehyde 4.1 1.25 

heptaldehyde 0.54 1.3 

2-methyl propanal 1.47 40 

2-hydroxy butyraldehyde 4.1 28 

2-methyl butyraldehyde 20.6 25 

2-ethyl butyraldehyde 10.0 1.25 

crotonaldehyde 13.0 6.7 

"source: Palmer (84). 

Vmole aldehyde oxidized/min/mg protein. 
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Tatsumi and Kitamura (116) showed that N-hydroxy-2-

acetylaminofluorene has noncompetitive inhibition and N-hydroxy-4-

acetylaminobiphenyl, N-hydroxyphenacetin, and N-hydroxy-2-proplonyl-

aminofluorene were inhibitory to rabbit liver aldehyde oxidase. Also, Igo and 

Mackler (50) reported that quinacrine inhibits flavin nucleotide containing 

enzymes and aldehyde oxidase. 

Knox (56) found that cyanide (10 mM), propamidine (0.4 mM), and 

plasmochin (0.4 mM| inhibit rabbit liver enzyme when cinchonidine and 

crotonaidehyde were used as substrates, and 8-hydroxyquinoline (2.4 mM) and 

atabrine (2 mM) when crotonaidehyde was used. In addition, Yoshihara and 

Tatsumi (124) reported that allopurinol, menadione, estradiol, and dithiothreitol 

were inhibitors for guinea pig liver aldehyde oxidase. 

Branzoli and Massey (13) found that inactivation of rabbit liver aldehyde 

oxidase by cyanide is due to the cyanolysis of a persulfide group essential for 

the catalytic activity of the enzyme. Rajagopalan et al. (96) reported that 

benzoquinone, menadione, hydroquinone, amytal, antimycin A, estradiol, 

progestron, 2,4-dinitrophenol, and Tritron X-100 are inhibitors for rabbit liver 

aldehyde oxidase. Also, Rajagopalan and Handler (95) showed that N-

methylpyridinium inhibits the enzyme. Quinacrine and arsenite were found to 

be competitive inhibitors, and p-mercuribenzoate was competitive type. In 

addition, methanol in large concentration caused progressive inactivation of 

enzyme and 0.33 mM and 20 fjM dinitrofluorobenzene caused complete 
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inactivation of enzyme in two minutes and in five minutes, respectively. This 

suggested that molybdenum component was present at the substrate-binding 

site, participated in the hydroxylating event, and was the first component of 

these enzymes to be reduced. 

Mahler et al. (67) studied a variety of compounds and found that/o-

chloromercuribenzoate, arsenite, and iodoacetate are sulfydryl inhibitors, 

whereas EDTA, 8-hydroxyquinoline, o-phenanthroline, thenoyltrifluoroacetone, 

citrate, cyanide, and azide are metal-binding agents as inhibitors for pig liver 

aldehyde oxidase. Also, quinacrine was found to be a flavin inhibitor. They 

suggested that sulfhydryl group on the enzyme was involved in catalysis. They 

also found that metal is required for cytochrome C interaction, but not for 

interaction with dyes or oxygen. 

Hall and Krenitsky (44) tested chlorpromazine as an inhibitor for rabbit 

liver aldehyde oxidase, using 6-methylpurine as the variable substrate and 

oxygen as the electron acceptor. In addition, Gormley et al. (40) reported that 

anilinoacridine is extremely potent competitive inhibitor for rabbit liver aldehyde 

oxidase but not xanthine oxidase. 

Chang et al. (20) reported that mercaptoethanol, dithiothreitol, and 

allopurinol were effective inhibitors to rat aldehyde oxidase. Robertson and 

Gamage (99) found that methadone was a strong inhibitor to rat aldehyde 

oxidase. 

Electron acceptors. Yoshihara and Tatsumi (124) compared 
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the kinetics of the reductions of diphenylsulfoxide (DPSO) and other classical 

electron acceptors such as oxygen and ferricyanide. The double-reciprocal plot 

of 2-hydroxypyrimidine-linked DPSO reduction with the highly purified enzyme 

was biphasic. Similar biphasic plots were obtained with the reductions of other 

electron acceptors. 

Rajagopalan et al. (96) assayed molecular oxygen, ferricyanide, 2,6-

dichlorophenolindophenol, methylene blue, phenazine methosulfate, 

silicomolybdate, and cytochrome C as electron acceptors with either aldehyde 

or N^-methylnicotinamide. Also, Rajagopalan and Handler (94) tested molecular 

oxygen, 2,6-dichlorophenolindophenol (DCIP), nitroblue tetrazolium (NBT), 

trinitrobenzenesulfonic acid (TBS), ferricyanide, methylene blue, silicomolibdate, 

and cytochrome C as electron acceptors. DCIP was insensitive to inhibitors 

and amytal inhibited transfer of electron to ferricyanide, methylene blue, 

phenazine methosulfate, and silicomolybdate. Antimycin A had no effect on 

these activities, but inhibited reduction of molecular oxygen, cytochrome C, 

NBT, and TBS. Oligomycin was also found to be an effective inhibitor of 

aldehyde oxidase. Antimycin A had anaerobically no effect on the reduction of 

ferricyanide, methylene blue, DCIP, silicomolybdate, or phenazine methosulfate. 

The markedly different effects of several inhibitors suggested the existence of 

multiple points of electron egress from the enzyme, and the complexity of the 

internal electron transport system of rabbit liver aldehyde oxidase. They 

concluded that these observations indicated four sites of electron egress from 
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the enzyme to the electron acceptors. This suggested an internal sequence of 

four carriers which mediate electron transport from substrate to oxygen. 

Tomita at al. (120) also tested cytochrome C, ferricyanide, DCIP, and NBT as 

electron acceptors for rabbit aldehyde oxidase. 

Krenitsky et al. (59) tested ferricyanide as electron acceptor for aldehyde 

oxidase from a wide variety of animals, and found that ferricyanide was an 

efficient electron acceptor in all but few species. They did not test oxygen as 

an electron acceptor. However, ferricyanide was not effective for extracts of 

snake tissues, dogfish liver, and the intestine of rat, mouse, and guinea pig. 

They suggested that actual electron acceptor could be different in vivo. 

Physiological role of aldehyde oxidase. Krenitsky et al. (59) 

investigated a variety of sources and concluded that wide distribution of 

aldehyde oxidase suggests that its primary metabolic function is one of rather 

fundamental importance to animals. In addition. Hall and Krenitsky (44) studied 

rabbit liver aldehyde oxidase and found that the commonly occurring 

nucleobases (hypoxanthine, xanthine, and adenine) are readily oxidized by 

xanthine oxidase but not by aldehyde oxidase. They suggested that aldehyde 

oxidase might play a less important role in the oxidation of endogenously 

generated purines than does xanthine oxidase. This view is consistent with the 

finding that levels of aldehyde oxidase vary more from species to species than 

does xanthine oxidase (59). However, the net effect is that many nucleoside 

analogues are much more efficiently oxidized by aldehyde oxidase than by 
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xanthine oxidase (44). Characteristics of aldehyde oxidases from various 

sources are sumnnarized in Table 4. 

Streptomyces 

Streptomyces are filamentous bacteria that are a member of the 

Actinomycetales family. These bacteria are most known for their numerous 

antibiotic production (26). Streptomyces are also known for some unique 

enzymes. Some of these enzymes are amylases (26, 36), cellulases (36), 

hemicellulase (36), proteases (26, 36), glucose isomerase (26, 36), lignin 

peroxidase (1, 98), polyethylene-degrading extracellular enzymes (90), and 

more. 

The life cycle of Streptomyces includes spore formation and vegetative 

mycelium growth. A mass of vegetative hyphae is referred to as mycelium, 

and hyphae are branched or unbranched filaments. Two kinds of mycelium 

exist: aerial mycelium and substrate mycelium. Aerial mycelium projects above 

the medium, whereas substrate mycelium occurs on the medium surface. 

Streptomycetes are similar to fungi in that they produce long filaments, they 

settle rapidly in solution, and they are easily recovered by filtration, but they 

are a true procaryote. Their spores are resistant to 5 to 10 min at 60 to 80°C 

(26). 

Streptomyces have been used in industrial fermentations for decades and 
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Table 4. Characteristics of various animal liver aldehyde oxidase 

Source MW 
(KDa) 

K„ (mM) (substrate) V ° 
* max Inhibitor e' Acceptor Reference 

pig - 7 (crotonaldehyde) - - methylene blue Gordon et al. (1940) 

pig -

380 (formaldehyde) 
100 (acetaldehyde) 
30 (propanal) 
25 (butyraldehyde) 

1.25 (valeraldehyde) 
1.30 (heptanal) 
6.7 (crotonaldehyde) 

1.7 
7.9 
8.7 

20.6 
4.1 
0.54 

13.0 

1,10-phenanthroline 
ferricyanide 

DCIP" 
Palmer (1962a) 

Guinea 
pig 

348"= 
300" 

~ 

• 

menadione, amytal, 
estradiol.cyanide, dithiothreitol 

potassium, Triton X-100 

ferricyanide 
DCIP" 

Yoshihara & Tatsumi 
(1985) 

bovine - 0.006 (n-hexanal) 
20 (acetaldehyde) 

- menadione 
Triton X-100 

oxygen Takahashi et al. 
(1979) 

bovine 222= - - - DCIP" Cabre & Canela (1987) 

hog 
rabbit 

268" 
270" 

0.36 (NMN°) 
0.66 (NMN°) 

- - oxygen Flested et al. (1973) 

rabbit - 17 (crotonaldehyde) 
0.17 (quinine) -

cyanide,propamidine, 
plasmochin, atabrine 
8-hydroxyquinoline 

oxygen 
methylene 

blue 
Knox (1946) 

rabbit -

1.3 (purine) 
0.21 (hypoxanthine) 

100 
167 

- ferricyanide Hall & Krenitsky (1986) 

'//mole aldehyde oxidized/min/mg protein. 

''DCIP: dlchlorophenolindophenol. 

°By gel filtration. 

"By gel electrophoresis. 
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are, therefore, acceptable for commercial production. Some are considered 

generally recognized as safe (GRAS)(12), which permits the use of their 

products in foods. For example, Streptomyces natalensis produces natamycin 

which is used as a food preservative for strawberries and raspberries, and 

Streptomyces griseus produces pronase, a heat stable protease (60°C for 10 

min)(53). 

Lignin-degrading Streptomyces setonii 75Vi2 and Streptomyces 

viridosporus T7A form white-yellowish and grey-green aerial spores, 

respectively, and grow optimally at 37®C. These microorganisms are involved 

in several aromatic compounds metabolism, producing different dioxygenases 

(111).  

L-Phenylalanine and L-tyrosine were completely catabolized through 

homogentisate 1,2-dioxygenase by S. setonii, but partially degraded by S. 

viridosporus (87). Catechol 1,2-dioxygenase was inducible in both S. setonii 

and S. viridosporus grown with catechol (91), fra/7s-cinnamic acid, vanillin 

(112) and benzoic acid (113). Also, protocatechuate 3,4-dioxygenase was 

inducible with p-coumaric, or ferulic acids and /n-hydroxybenzoic acid in S. 

setonii S. viridosporus. respectively (91, 112). Whereas, gentisate 1,2-

dioxygenase was induced when S. viridosporus was grown with gentisate. S. 

setonii 75Vi2 is best known for its aromatic aldehyde and acid biodegradation. 

frans-Cinnamic acid was metabolized via benzaldehyde, benzoic acid to 

catechol, and p-coumaric acid was catabolized to protocatechulc acid by S. 
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setonii (112). Vanillic acid was nnetabolized via guaiacol and catechol to 

c/s,c/s-muconic acid by S. setonii (91) and cytochrome P-450 was involved 

(111). Vanillin (aromatic aldehyde) was converted to vanillic acid by 5. 

viridosporus in a whole-cell bioconversion (88). Vanillic acid is not degraded by 

5. viridosporus. Also, ferulic acid was converted to vanillin, vanillic acid then 

guaiacol to catechol by S. setonii (112). S. viridosporus metabolized p-

hydroxybenzaldehyde via p-hydroxybenzoic acid and benzaldehyde, m-

hydroxybenzaldehyde, p-hydroxybenzaldehyde, and protocatechualdehyde (24). 

All aromatic compounds were catabolized via the l^-ketoadipate and gentisate 

pathways. 

Investigation of lignocellulose biodegradation by 5. viridosporus T7A has 

been very extensive. Endoglucanase, xyianase, and lignin peroxidase were 

identified for S. viridosporus incubated with lignocellulose in a lignocellulose 

slurry with 0.6% yeast extract medium (1). The optimal lignocellulose 

degradation by S. viridosporus was observed in the pH range of 8.4 to 8.8, 

with an optimum of pH 8.5 (86). Lignin degradation by S. viridosporus was 

oxidative and involved demethylations, ring cleavage reactions, and oxidative 

attack on phenylpropanoid side-chains (24). Cellulase activity was higher for 

mutants than the wild type S. viridosporus (29). Also, a UV-irradiated mutant 

and a protoplast fusion recombinant had higher and more persistent peroxidase, 

esterase, and endoglucanase activities than did the wild-type S. viridosporus, 

whereas higher xyianase was shown in a UV-irradiated mutant (97). Four 
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isoforms of peroxidase were identified by PAGE and individually purified (98). 

Three isoforms were found to be immunologically related to one another (65). 

S. vin'dosporus and S. setonii were also reported to degrade heat-treated 

polyethylene film containing prooxidant and 6% starch (63). The presence of 

extracellular enzyme(s) produced by these two Streptomyces species was 

demonstrated (89, 90). These unique enzyme(s) were produced in 0.6% yeast 

extract medium. 

Experimental Design 

Aldehyde oxidase was Initially induced In an S. setonii 75Vi2 shake-flask 

study and was scaled-up via 800-ml continuous stirred reactor (CSR), 5-L, and 

15-L, to 50-L batch fermentation. Aldehyde oxidase activity was monitored 

during each step of scale-up procedure. In order to get high aldehyde oxidase 

activity, amount of inducer, number of inducer additions, time interval between 

inducer additions, time of addition, and presence or absence of pH control were 

tested. Also, effect of spore and vegetative cell inoculation on enzyme activity 

were compared. Initially propanal was used as an inducer for aldehyde 

oxidase; however, aromatic aldehydes (vanillin and fraws-cinnamaldehyde) were 

used as inducers for 5. viridosporus T7A because of inconsistent aldehyde 

induction pattern. For the detection of product by aldehyde oxidase reaction, 

high-performance liquid chromatography (HPLC), thin-layer chromatography 
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(TLC), and 2,4-dinitrophenylhydrazine were used. Also, polyacrylamide gel 

electrophoresis (PAGE) was performed to determine aldehyde oxidase molecular 

weight and HjOj production on zymogram. Experiments were performed in 

duplicate and statistical analysis was done by least significance difference 

(LSD) at the level of P<0.05. 

Statement of the Problem 

Aldehyde oxidase from various sources has a broad substrate specificity 

as illustrated above. Soybean's use for human consumption is limited due to 

some off-flavors despite its nutritional benefit. Thus, it is desirable to remove 

or reduce those off-flavors to expand soybean as a protein source for human 

consumption. 

Lipoxygenase inactivation by solvent modification (3, 11, 105, 114). 

seems to be effective, but it often denatures soy protein, making it less soluble. 

Enzymatic off-flavor removal could be a better way to improve this problem. 

Chiba et al. (21) used aldehyde dehydrogenase from bovine liver to remove the 

green beany flavor in soy protein isolate solution. However, they suggested 

that it is impractical and uneconomical because of NAD^ requirement in the 

enzyme reaction. 

Most aldehyde oxidases reported are from other than bacterial source. 

Production of aldehyde oxidase by fermentation would be preferred for a 
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bacterial enzyme source because mass production is possible in a relatively 

short time. Bovine liver aldehyde oxidase was reported to have a high affinity 

for hexanal (115), which is a major off-flavor compound. Bacterial aldehyde 

oxidase might have similar characteristics and possibly it could attack hexanal 

bound to soy protein. The next section addresses the production of aldehyde 

oxidase by Streptomyces species in small and large fermentations. 
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MATERIALS AND METHODS 

Microorganisms 

The actinomycetes used were Streptomyces viridosporus T7A (ATCC 

39115) and Streptomyces setonii 75Vi2 (ATCC 39116). S. viridosporus T7A is 

reported to produce an aromatic aldehyde oxidase (29) and S. setonii 75Vi2 Is 

also known to produce an aliphatic aldehyde oxidase when propanal (3.9 g/L 

medium) was used as an inducer (unpublished data by Erwin Affandi). 5. 

viridosporus and S. setonii were maintained at 4°C on yeast extract-malt 

extract-glucose agar and 0.6% (w/v) yeast extract agar, respectively (87). S. 

viridosporus spores are very shelf-stable and the culture was transferred every 

3-6 weeks. In contrast, S. setonii spores are not very shelf-stable and require 

transferring every 2-4 weeks. 

Medium 

The medium used was 0.6% (w/v) yeast extract (Difco Laboratories, 

Detroit, Ml) in nitrogen-free salts solution (5.03 g of NajHPO^, 1.98 g of 

KH2PO4, 0.20 g of MgS047H20, 0.20 g of NaCI, 0.05 g of CaCla^HjO, plus 1 

ml of trace elements solution [71] per liter of deionized HjO; pH 7.1 to 7.2) 
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This medium has been used previously for the production of unique enzymes 

like lignin-peroxldases (1, 98) and polyethylene-degrading enzymes by 

Streptomyces (63, 89). 

Optimization of Enzyme Production 

Shalce-flasic studies 

A cotton plugged 2-L Erienmeyer flask containing 1 L of sterile 0.6% 

(w/v) yeast extract medium was inoculated with a loopful of S. setonii 75Vi2 

spores (10' spores/ml). The culture was incubated with shaking at 125 rpm 

and 37®C. After a 48, 60, or 72 hr incubation, 3.9 g propanal (5 ml; 97%; 

density = 0.805 g/ml) (Aldrich Chemicals Co., Milwaukee, Wl) was added to 1-

L medium and after an additional 12 hr incubation, a second 3.9 g propanal 

was added to each bioreactor for enzyme induction. Propanal was stored in a 

Nj atmosphere to prevent autoxidation. The pH was checked after 24 hr 

incubation then monitored every 12 hr until harvest. Cell-mass was harvested 

by filtration (Whatman no. 54 harden filter paper, Whatman Co., Hillsboro, OR), 

scraped from the paper, suspended in 0.1 M phosphate buffer (pH 7,2), cells 

disrupted via French press (SLM Instruments, Inc., Urbana, IL) (24) then 

supernatant was recovered by centrifugation 27,000 x p at 4°C. The enzyme 

activity was assayed by oxygen consumption measurement after substrate 

addition by using a YSI oxygraph (YSI model 5300, Yellow Springs Instruments 
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inc., Yellow Springs, OH). Enzyme activity was determined for cultures with 

various incubation times (12 and 24 hr) after a 3.1 or 3.9 g propanal/L addition. 

pH study in 800-ml continuous stirred reactor (CSR) 

Initial CSR fermentations were performed in customized 1.2 L Fleaker 

Beakers (Corning Glass Works, Corning, NY). S. sefom/75Vi2 spores were 

inoculated into 800 ml of sterile 0.6% (w/v) yeast extract medium, stirred with 

a magnetic bar, and incubated in a 37°C waterbath, with aeration and manual 

antifoam control with Antifoam A (Sigma Chemical Co., St. Louis, MO). Four 

reactors were operated simultaneously with pH controlled with 2 N NaOH or 

HCI, at pH 7.0, 7.5, 8.0, and 8.5. After a 36 or 48 hr incubation, 1.6 g 

propanal/L was added to determine the optimal time for propanal addition for 

enzyme induction. Aldehyde oxidase activity for different cell-free extracts was 

compared with one propanal addition after 36 or 48 hr incubation and two 

propanal additions to the culture. The time interval (6 or 12 hr) between two 

propanal addition was also compared. 

5-L batch fermentation 

Spore vs. vegetative cell inoculum. 5. setonii 75Vi2 spores were 

inoculated into 100-ml of sterile 0.6% (w/v) yeast extract medium in a 250-ml 

Erienmeyer flask then incubated with shaking at 37°C for 48 hr. This 

vegetative cell inoculum was then aseptically transferred into 5-L of sterile 
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0.6% (w/v) yeast extract medium. The spores from slants were also used as 

an inoculum and the results were compared with vegetative cell inoculum. 

Fermentation was done in a 7,5-L Microferm fermentor (New Brunswick 

Scientific Co., Inc., Edison, NJ). The pH was adjusted to 7.0 with 2 N HCI or 

NaOH before inoculation and agitation was 250 rpm at 37®C with continuous 

aeration and automatic antifoam control with Antifoam A. The propanal 

concentrations tested for enzyme induction were 0.8, 1.6, and 2.4 g/L medium 

Growth curve was constructed by measuring dry cell-mass and absorbance at 

600 nm. For dry cell-mass weight measurements, a 100-ml sample was taken 

every four hours, cell-mass was collected on preweighed filter paper (Whatman 

no. 1), then dried at 45°C overnight. The dry cell weight was determined by 

substracting preweighed filter paper from dried filter paper with cell-mass. For 

wet cell-mass weight determination, a 100-ml of culture sample was taken 

every 4 hr for a 76 hr fermentation after an Initial 20 hr incubation. After a 36 

hr incubation, 3.9 g/L propanal was added to the bioreactor for a maximum of 

four times in 6 hr intervals to determine the optimal propanal addition for 

aldehyde oxidase induction. 

15-L batch fermentation 

Fermentation was done in a 19-L Bioengineering fermentor (Wald, 

Switzerland) with dissolved oxygen, temperature, antifoam and agitation 

control. Fifteen-liters of 0.6% (w/v) yeast extract medium with a modified 
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nitrogen-free mineral salts solution in which the phosphate concentration was 

changed to 0.02 M (1.006 g of Na2HP04 and 0.396 g of KH2PO4) and sterilized 

in situ. The pH was adjusted to 7.0 then inoculated with a spore suspension of 

S. setonii 75Vi2 (3 slants) and the fermentor operated with agitation (250 rpm), 

continuous aeration (0.7 vvm), and antifoam control (Antifoam A) at 37°C, as 

previously done in 5-L fermentation. The pH was monitored and dissolved 

oxygen was controlled at 80%. Propanal (1.6 g/L) was added when pH 

increased to 7.8 (24 hr incubation), indicating ammonium release from amino 

acid biodegradation (86), and dissolved oxygen (DOj) dropped to 20% then 

started to increase which indicated the cells were entering late-log phase. A 

second 1.6 g propanal/L addition was made after 6 hr incubation without pH 

control and the culture was harvested when DO2 returned to 100% which 

indicates late stationary phase. During the course of the fermentation wet cell-

mass weight was determined by filtration (Whatman no. 54) of 100-ml culture 

samples every 4 hr. The aldehyde oxidase activity was also determined for 

each sample via oxygraph. 

50-L batch fermentation 

Fermentation was done in a Braun U-50 Biotech 72-L fermentor (B. 

Braun, Allentown, PA) with a 50-L working volume, temperature, aeration, and 

antifoam controls. The fermentation was maintained at 37®C. Dissolved 

oxygen was controlled by change in agitation speed and it was set for 80% 
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saturation. However, during log phase growth, dissolved oxygen dropped to 

20% saturation. The pH was adjusted to 7.0 before inoculation then 

continually monitored but not controlled during the fermentation. 

Three slants of S. viridosporus T7A (4 to 6 weeks old culture) or S. 

setonii 75Vi2 (fresh, 1 to 4 weeks old culture) were used for inoculation. The 

medium contained 0.6% (w/v) yeast extract (Difco) with or without 1.0% (w/v) 

malt extract (Difco) in the modified nitrogen-free mineral salts solution with 

0.02 M phosphate. Malt extract was heat sterilized in water separately, then 

was aseptically added to the sterile fermentor and pH adjusted to 7.1. During 

culture growth, the pH increased to 7.6-7.8 with a corresponding oxygen 

consumption drop to 30-50% saturation. A 0.2% (v/v) propanal, 0.2% (w/v) 

vanillin (Aldrich) or 0.02-0.2% (v/v) frd/75-cinnamaldehyde (Aldrich) was added 

for enzyme induction. Two-liters of culture broth were removed before vanillin 

or frans-cinnamaldehyde addition for S. viridosporus and S. setonii culture, 

respectively. The culture was incubated for an additional 6 hr and the 

fermentor was cooled to 17®C when an 80% decrease of vanillin or trans-

cinnamaldehyde was observed spectrophotometrically (Beckman DU*-50 

spectrophotometer, Beckman Instruments Inc., Fullerton, CA) at 345 nm and 

286 nm, respectively (88). Then, the culture was collected in a 50-L carboy 

and stored at 4°C. Reduction in aromatic aldehyde concentration was 

continually monitored for two to three days during storage at 4°C and the 

culture was harvested when the aromatic aldehyde concentration dropped to 0-



www.manaraa.com

44 

5% of initial vanillin added for S. viridosporus or /raf7s-cinnamaldehyde for S. 

setonii. 

Enzyme Assay and Partial Purification 

Cell-free crude-extract preparation 

The cell-mass was harvested by filtration (Whatman no. 54), washed 

with 0.1 M phosphate buffer, mixed with 0.1 M phosphate buffer to form a 

paste and then disrupted via a French press at 1,200 psi (24). These cracked 

cells were then centrifuged for 20 minutes at 27,000 x ^ at 4°C and the cell-

free extract evaluated for aldehyde oxidase activity. Crude-extracts were 

freeze-dried for 72 hours in a Virtis freeze-dryer (Unitrap II, Gardiner, NY) at 

room temperature and were stored in a closed container at 4°C until analysis. 

For enzyme assay, freeze-dried crude-extract was resuspended at a 

concentration of 20 to 40 mg/ml in 0.1 M phosphate buffer. Freeze-dried 

extracts contained 0.22 to 0.26 mg protein/ml. 

Ammonium sulfate precipitation 

Ammonium sulfate (Sigma Chemical Co.) was slowly added to 

continuously stirred crude-extract at 4°C. Serial continuous ammonium sulfate 

saturation from 25 to 60% was evaluated and precipitate was collected by 

centrifugation at 27,000 x g. The pellet was resuspended in 0.1 M phosphate 
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buffer (pH 7.1). Each fraction (supernatant and pellet) was assayed for 

aldehyde oxidase activity. 

Enzyme assay 

For aldehyde oxidase activity, the consumption of molecular oxygen 

upon the addition of 500 mM propanal, 10 mM vanillin or 10 mM trans-

cinnamaldehyde was measured via oxygraph (YSI Inc.) with recorder (Omega, 

Stamford, CT), in a temperature-controlled reaction chamber at 37°C and 

continually stirred. Oxygraph reaction mixture procedure is described in Figure 

2. The reaction mixture contained 3.6 ml of 0.1 M phosphate buffer, 200 //I of 

3% HjOj (Fisher Scientific Co., Pittsburgh, PA) and 100//I of cell-free extract. 

Hydrogen peroxide was added to the reaction mixture in an effort to fatigue 

catalase activity, which interferes with the aldehyde oxidase assay. After 

equilibrating the reaction mixture for 5 minutes at 37 °C, the reaction was 

initiated by substrate addition (0.1 ml of 500 mM propanal, 131 mM vanillin, or 

10 mM fraA75-cinnamaldehyde). The initial oxygen decrease in the reaction 

mixture was measured. Background changes in oxygen consumption were 

determined for each enzyme extract after a 10-min treatment in boiling water. 

This boiled extract was used as control. A 0.1 ^mole of oxygen change for the 

oxygraph was calibrated by using catechol 1,2-dioxygenase produced by 5. 

setonii 75Vi2 grown in benzoic acid medium (112). One unit of enzyme 

activity was expressed as 0.1 //mole of O2 consumed per minute per mg of 
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phosphate buffer (3.6 ml, pH 7.1) stirring at 37°C 

100 //I cell-free extract is added 

200 )ul 3% H2O2 is added and equilibrated for 5 min 

substrate addition (100 //I of 500 mM propanal, 131 mM 
vanillin or 10 mM ?rans-cinnamaldehyde) 

oxygen consumption measurement (0.1 /vmole O2 consumed 
represented 2.15% O2 change) 

Fig 2. Flow diagram of aldehyde oxidase assay 
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protein (87). Protein concentration was measured by the method of Lowry et 

al. (64). 

Product analysis. Propanal bioconversion to propionic acid was 

confirmed by using a Waters high performance liquid chromatograph (HPLC) 

(Milford, MA), equipped with Waters Model 401 refractive index detector. A 

Bio-Rad Aminex HPX-87H column (300 x 7.8 mm) (Bio-Rad Chemical Division, 

Richmond, CA) was used with a 20-//I injection loop and 0.012 M H2SO4 as a 

mobile phase at a flow rate of 0.8 ml/min at 65°C. Propanal and propionic acid 

had retention times of 17.5 and 14.2 min, respectively. 

The conversion of vanillin to vanillic acid was detected by absorbance at 

345 nm. fra/7S-Cinnamaldehyde and vanillin have absorbance maxima at 286 

and 345 nm, respectively, which is not present for f/'a/75-cinnamic or vanillic 

acid. Samples from each fermentation were analyzed in replicates of two or 

more. 

Another method evaluated for aldehyde detection was a 2,4-

dinitrophenylhydrazine assay. The mixture contained 0.1 ml of 2,4-

dinitrophenylhydrazine, 1.9 ml of 95% ethanol, 1.0 ml of 0.2 N NaOH, and 1.0 

ml of various concentration of propanal or 1.0 ml water for the blank. The 2,4-

dinitrophenylhydrazine reacts with aldehyde groups to produce a yellow to red 

precipitate, which had an absorption maximum at 520 nm. 

For aldehydes detection, thin-layer chromatography (TLC) was also used. 

Glass plate (20 x 20 cm) coated with silica gel G and mobile phase of 
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hexane:ether:acetic acid (50:50:1) was used. The 3.6 ml reaction mixture after 

propanal or hexanal addition and oxygraph measurement was acidified to pH < 

3 with concentrated HCI, then extracted with 1.0 ml ether, which was 

dewatered by the addition of anhydrous Na2S04. A 5 ;ul sample was applied to 

activated TLC plate and R, values were measured. Aldehydes were identified 

by spraying the plate with 0.5% (w/v) 2,4-dinitrophenylhydrazine solution in 2 

N HCI which gave yellow to red spot and their corresponding acids were 

identified under longwave ultraviolet-light after a 0.2% (w/v) 2',7'-

dichlorofluorescein solution in 95% ethanol was sprayed over the TLC plate. 

Polyacrylamide gel electrophoresis (PAGE) 

For preparative sodium dodecylsulfate (SDS) PAGE, the discontinuous gel 

buffer system of Laemmli (60) was used. All chemicals used were purchased 

from Sigma Chemicals Co. Stacking gel was 4% acrylamide and separating gel 

was 10 or 12% acrylamide (29.2 acrylamide:0.8 N'N*-/>/s-methylene-

acrylamide, w/w). The polymerization reaction was started with addition of 

0.05% ammonium persulfate and 0.05% N,N,N',N'-tetramethylethylenediamine 

(TEMED) and placed at room temperature for 45 minutes. Sample buffer (SOS 

reducing buffer) contained 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) 2-S-

mercaptoethanol and 0.00125% (w/v) bromophenol blue. The sample was 

diluted with sample buffer at 4:1 and was heated at 95°C for 4 minutes before 

loading. The gels were 7 cm long and 8 cm wide (Mini-PROTEAN®ll 
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Electrophoresis cell, Blorad, Hercules, CA) and were electrophoresed for an 

hour at constant 64 V. The gels were stained with 0.1% (w/v) Coonnasie Blue 

R-250 in the solution containing methanohacetic acid:water (40:10:50) and 

were destained with the same solution without stain. 

Nondenaturing gel electrophoresis was performed in a 5 cm, 12% 

acrylamide (29.2 acrylamide:0.8 N',N'-/7/5-methylene-acrylamide, w/w) 

separating gel, and a 2 cm, 4% acrylamide stacking gel. About 50 to 150 //g 

of protein were loaded into each well depending on the gel thickness. The gels 

were electrophoresed for an hour in buffer (0.025 M Tris-glycine; pH 8.3) at 

constant 64 V. The gels were submerged In 0.02% (w/v) vanillin solution, 

washed in buffer, then placed in 0.002% (w/v) horseradish peroxidase and 

0.02% (w/v) of o-dianisidine dihydrochloride solution (24). The HjOj produced 

during oxidation of vanillin to vanillic acid oxidized o-dianisidine to yellow or 

brown which identified the aldehyde oxidase band on the gel. The protein 

bands which demonstrated positive enzyme activity were cut out of the gel, 

frozen then ground by a pestle in mortar with cold phosphate buffer to extract 

aldehyde oxidase for SOS-PAGE molecular determination as above. 
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RESULTS AND DISCUSSION 

Fermentation 

Shake-flask studies 

Aldehyde oxidase in 5. setonii 75Vi2 was induced by adding 3.9 g 

propanal/L in shake-flask study by a former colleague Erwin Affandi 

(unpublished data). This study was performed to further characterize aldehyde 

oxidase induction and production by S. setonii. Initial pH was around 7.1 for all 

three flasks before inoculation and pH increased slowly. The first propanal (3.9 

g/L) addition was after 48, 60, or 72 hr incubation for aldehyde oxidase 

induction (Table 5). Generally propanal addition (3.9 g/U caused a decrease in 

medium pH, which could be the result of autoxidation to propionic acid. 

Propanal addition at the beginning of fermentation resulted in no cell growth, 

probably due to its toxic effect (unpublished data by Erwin Affandi). 

After a 48 hr shake-flask incubation of S. setonii, 3.9 g of propanal was 

added and cells were harvested after 60 or 72 hr incubation to see the effect of 

incubation time after propanal addition. Final pH was 6.4 and 6.0 for 3.1 and 

3.9 g propanal/L addition to 48 hr culture of S. setonii, respectively, which was 

harvested after 72 hr incubation. Also, pH decreased after propanal addition 

and pH decreased during incubation which will affect the cell growth and 
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Table 5. pH changes of S. setonii 75VI2 culture in shake-flask study after 
3.9 g propanal addition to 1 L culture medium at different time of 
incubation 

incubation time 
Flask # 

0 24 hr 48 hr 60 hr 72 hr 

1 7.07 7.07 7.15" ND'" 5.12 

2 7.06 7.09 7.12 7.29' 6.53' 

3 7.07 7.08 7.24 7.46 7.60' 

'Time of propanal addition. 

"ND: not determined. 

enzyme production. Thus, it was decided that pH controlled fermentation was 

required. 

The 800-ml continuous stirred reactor study 

Mass transfer of oxygen into culture broth is limited in shake-flask 

cultures compared to CSR. Therefore, CSR was employed for further studies 

and initially four-customized fleaker-beaker reactors with pH control were 

available and utilized. S. setonii cultured in 800-ml CSR with and without pH 

control was employed. To each bioreactor, 3.9 g propanal/L medium was 



www.manaraa.com

52 

added after 24 hr incubation and a second propanal addition was made after 36 

hr Incubation to fermentors with and without pH control. Figure 3 illustrates 

pH changes during CSR fermentation with two propanal (3.9 g/L) addition 

without pH control. A first propanal addition caused pH drop from 7.5 to 6.5 

and a second propanal addition demonstrated about 0.5 pH unit drop. As seen 

in shake-flask study, the pH drop after each propanal addition was probably 

due to autoxidation of propanal to propionic acid . 

5-L batch fermentation 

The amount of propanal was decided as 1.6 g/L in previous 800-ml CSR 

study. However, the CSRs were home-made with limited control of agitation, 

thus it had a potential mixing problem. Therefore, it was necessary to confirm 

aldehyde oxidase production in 5-L fermentation with better agitation and 

aeration control. 

After 36 hr incubation, 3.9 g propanal/L was added up to four times in 6 

hr intervals to determine optimal number of propanal addition for maximum 

enzyme induction. Samples were removed prior to each propanal addition and 

cell-free extracts were prepared for aldehyde oxidase activity. Different 

propanal amount of 0.8, 1.6, and 3.1 g/L was also investigated. 

Growth curve of S. setonii 75vi2 was determined by measuring dry cell 

weight and absorbance at 600 nm (Fig. 4) to determine late-log and stationary 

phase for propanal addition. Streptomyces are filamentous bacteria that settle 
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Figure 3. Changes in pH with inducer added after 36 and 48 hr 
incubation for continuous stirred reactor (CSR) fermentation 
of S. setonii 75Vi2 in 0.6% yeast extract medium without 
pH control 
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Figure 4. Growth curve for 5-L batch fermentation of S. setonii 75Vi2 
without pH control 
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rapidly making cell measurement spectrophotometrically very difficult. 

However, absorbance measurement at 600 nm was tried for a quick and easy 

cell-mass determination. The late-log and stationary phase occurred after 48 to 

56 hr incubation. All three methods illustrated the same growth patterns, 

which indicated they adequately measured cell production and dry cell-mass 

correlated with cell growth in 15-L batch fermentation (in next section). Similar 

results were demonstrated by Granade et al. (41) for filamentous fungi and by 

Flowers and Williams (35) for Streptomyces sp. Also, wet cell-mass weight 

measurements were useful in rapid growth estimation for filamentous 

microorganisms, compared with dry cell-mass weight measurements (16). 

To S. setonii culture in stationary phase (62 hr incubation), 1.6 g 

propanal/L medium was added and a second propanal addition after 6 hr 

incubation. Generally, pH dropped after propanal was added to S. setonii 5-L 

batch fermentor. This was probably due to propanal autoxidation to propionic 

acid and to possible cell lysis. The culture medium pH of 5-L fermentor 

increased faster than that of shake-flask culture medium. This difference 

between fermentor and shake-flask cultures were probably due to a lower 

dissolved oxygen in shake-flask which depends on diffusion of Oj through the 

liquid's surface (6) which consequentially results in slow growth rate. 

Spore vs. viable cell inoculum. In an effort to reduce lag time, viable 

cells were evaluated as an inoculum for 5-L batch fermentation. S. setonii 

spores were inoculated into 100-ml sterile 0.6% (w/v) yeast extract medium in 
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250-ml Erienmeyer flask and incubated with shaking at 37°C for 48 hr. For 

viable cell inoculum, a fermentor with 5-L of 0.6% (w/v) yeast extract medium 

was inoculated with 50 ml of shake-flask culture after cell-mass settled to the 

bottom. For a spore inoculum, a fermentor with 5-L of 0.6% (w/v) yeast 

extract medium was inoculated with aerial spores from two stock slants 

suspended in 10 ml of sterile water. For enzyme induction, propanal (1.6 g/L) 

was added after 50 hr incubation followed by a second propanal addition after 

56 hr incubation, then cell-mass was harvested after 62 hr incubation. The 

pattern for pH change in the fermentor with viable cell inoculum was similar to 

the spore inoculated 5-L batch fermentations. However, aldehyde oxidase was 

not induced when viable cells were used as an inoculum, and no difference in 

lag time was observed when spores or viable cells were used as Inoculum. 

Therefore, a spore suspension was used to inoculate all future fermentation. 

15-L batch fermentation 

This 15-L fermentation was done to correlate pH change, cell growth, 

and enzyme activity between 5-L and 50-L batch fermentation. S. setonii cell 

density was maximum at about 21 hr incubation for 15-L batch fermentations. 

Despite efforts of the dissolved oxygen (DOj) controller during the period of 

most rapid growth, DOj concentrations decreased (Fig. 5). This decrease in 

DO2 correlated to a rapid increase in cell-mass (Bottom frame; Fig. 5), because 

oxygen is relatively insoluble in water (<10 mg/L) and quickly becomes limiting 
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Figure 5. Changes in pH and VoOi saturation with inducer added after 
18 and 24 hr incubation (Top frame) and growth curve 
without inducer (Bottom frame) for 15-L batch fermentation 
of S. setonii 75Vi2 in 0.6% yeast extract medium 
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in liquid bacterial cultures (14). The pH constantly increased until about 36 hr 

incubation, then plateaued after 37 hr and a final pH was 8.2. For propanal 

addition, DO2 and pH were used as indicators of late-log phase growth because 

reduced oxygen consumption correlates to reduced cell growth (6) and pH 

increase correlates to amino acid catabolism (Fig. 5)(86). It was determined 

that pH increase to 7.5 and a DO2 of 10% higher than lowest DOj 

concentration achieved during log-phase growth was a good indicator for 

enzyme inducer addition (1.6 g propanai/L medium). A similar medium and 

procedure were used by Ramachandra et al. (97) and Pometto et al. (87) for 

the induction of lignin peroxidase and polyethylene-degrading enzymes, 

respectively, when pH increased > 8.0. Cell clumping was also observed in 

the 5-L fermentor but not in the 15-L fermentor possibly due to differences in 

mechanical shear of impeller blade size, reactor diameters, and baffles between 

the two reactors with the same agitation speeds. 

50-L S. setonii batch fermentation 

The medium contained 0.6% (w/v) yeast extract in a modified nitrogen-

free mineral salts solution with 0.02 M phosphate. The first and second 

propanal (1.6 g/L) addition was after 19 and 25 hr incubation. Cells were 

harvested after additional 6 hr incubation followed by cooling down in the 

fermentor to 17®C. Dissolved oxygen and pH patterns were similar to 15-L 

batch fermentations (Fig. 5). Initially, S. setonii fermentation showed positive 
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aldehyde oxidase activity with good cell-mass production (6.5 to 7.8 g/L wet 

weight). However, three subsequent fermentations using the same induction 

patterns showed marginal specific activity (s 0.002 units) with cell densities of 

5.5 to 7.0 g/L (wet weight). The dissolved oxygen and pH patterns were 

repeatable (Fig. 5), which implies fermentations were consistent. No 

contamination was observed in any fermentation when culture was examined 

microscopically. 

Enzyme Activity for S. setonii 75VI2 

Our initial studies focused primarily on optimization of enzyme production 

with S. setonii, while most of the enzyme partial purification studies focused on 

5. viridosporus. S. setonii demonstrated poor enzyme stability and an irregular 

enzyme induction pattern, which forced us to change microorganisms. 

Aldehyde oxidase activity was monitored during scale-up process from 

shake-flask to 50-L batch fermentation. However, enzyme activity was 

determined at culture termination for shake-flask, 800-ml CSR, and 5-L, and 

15-L batch fermentation which indicated repeatable aldehyde oxidase induction 

in each step. Enzyme activity was monitored continuously after propanal 

addition for 50-L batch fermentations by collecting 1 to 2 liter aseptic samples 

before inducer addition then every 1 to 2 hr prior until harvest to establish a 

protocol for maximum aldehyde oxidase production. 
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Shake-flask cultures 

Cells were harvested after 60 or 72 hr incubation when 3.9 g propanal 

was added after 48-hr incubation; aldehyde oxidase specific activities were 

0.154 and 0.034 units, respectively. This five-fold difference in enzyme 

activity suggested that enzyme induction must be timed properly. It was 

statistically significant (P<0.05) among data collected through 5-L batch 

fermentation when analyzed by Least Significant Difference (LSD). The culture 

harvested after 72 hr incubation with two propanal (3.9 g/L) additions after 48 

and 60 hr incubation showed 0.017 unit of specific activity. Culture without 

propanal addition consistently showed no aldehyde oxidase activity. Finally, no 

difference in specific activity (0.02 units) was observed when 3.1 or 3.9 g 

propanal/L was used as the enzyme induction in 1-L shake-flask culture. Since 

shake-flask cultures have low dissolved oxygen and limited control, more 

controlled fermentation was needed to test variables such as concentration of 

and number of propanal additions. 

The 800-ml continuous stirred reactors 

pH effect. Aldehyde oxidase specific activity was 0.020 unit for pH 

7.1 controlled culture, whereas pH uncontrolled culture demonstrated 0.022 

unit with a final pH of 6.10 (Table 6). On the other hand, pH controlled at 8.0 

and 8.5 showed no activity and poor growth, whereas, pH controlled at 7.5 

demonstrated marginal activity. Possibly cell growth was in log phase when 
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Table 6. Aldehyde oxidase activity of S. setonii 75Vi2 culture in 800-nnl 
CSR with and without pH control when propanal (3.9 g/L) was 
used as an inducer 

pH Specific activity' 

uncontrolled 0.022 

7.1 0.020 

7.5 NAD" 

8.0 NAD 

8.5 NAD 

'Activity was nneasured by oxygraph with propanal as a substrate and 
specific activity was defined as 0.1 //mole Oj per minute per mg protein. 

"No activity detected by oxygraph. 

propanal was added or culture was affected by pH localization due to indirect 

culture mixing with a magnetic bar and stir plate. However, some ligninolytic 

peroxidases were produced in alkaline pH (pH 8.5) (86) and polyethylene-

degrading enzyme(s) were produced when pH was above 8,0 without pH 

control (90). Thus, it was decided not to control culture pH. 

Annount of propanal used for inducer. The concentration of 

propanal tested was 0.8, 1.6, or 3.1 g/L medium in 800-ml CSR in an effort to 

optimize propanal concentrations for enzyme induction. Aldehyde oxidase 
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specific activity was 0.02 units when 1.6 g propanal/L was added, whereas 

marginal activity was detected when 0.8 or 3.1 g propanal/L was added. 

Probably, 0.8 g/L was too small for enzyme induction and 3.1 g/L was toxic to 

the culture due to autoxidation. Therefore, it was decided to use 1.6 g 

propanal/L medium. This resulted in less pH decrease compared with 3.9 g/L 

propanal addition as demonstrated in shake-flask and 800-ml CSR cultures. 

Number of propanal addition effect. Specific activity was 0.003 unit 

of aldehyde oxidase for S. setonii in 800-ml CSR treated with propanal (1.6 g/L) 

after 36 hr incubation with cells harvested 6 hr later (Table 7). After 36 hr 

incubation with 6 hr interval between propanal addition, two propanal treated 

cell-free extracts demonstrated specific activity of 0.017 unit. On the other 

hand, after 36 hr incubation with 12 hr interval between the second propanal 

addition, two propanal treated cell-free extracts demonstrated specific activity 

of 0.02 unit. Two propanal additions showed better aldehyde oxidase activity 

with propanal as the substrate, whereas time interval between the second 

propanal addition demonstrated no difference probably due to limited mixing by 

the magnetic stir bar. Therefore, it was decided to use two propanal 

treatments at 1.6 g/L for S. sero/?//enzyme induction. 

5-L batch fermentation 

Propanal concentration and number of propanal addition were evaluated 

again in 5-L batch fermentation to confirm previous 800-ml CSR cultures. 
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Table 7. Aldehyde oxidase activity of S. setonii 75Vi2 culture in 800-ml 
CSR with propanal (1.6 g/L) added as an inducer' 

Number of propanal additions Time interval Specific activity" 

1 not applicable 0.003 

2 6 hr 0.017 

2 12 hr 0.020 

'A first propanal was added after 36 hr incubation. 

"Activity was measured by oxygraph with propanal as a substrate and 
specific activity was defined as 0.1 /;mole O2 per minute per mg protein. 
Average of duplicate. 

Direct drive agitation control ensured excellent culture mixing in 5-L fermentor. 

Specific activity was 0.01 unit for the enzyme extract after the first 3.9 g/L 

propanal addition, whereas all the other enzyme extracts with up to 4 propanal 

additions in 6 hr intervals did not generate noticeable activity (Table 8). Culture 

with 0.8 and 3.1 g/L propanal addition showed no activity as seen in 800-ml 

CSR studies. Whereas, after 36 hr incubation, two propanal treatments (1.6 

g/L) In 6 hr intervals between propanal additions showed specific activity of 

0.026 unit, which was not statistically significant (P<0.05) by LSD from the 

one 3.9 g/L addition. However, it was decided to add two propanal in 6 hr 
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Table 8. Aldehyde oxidase activity of S. setonii 5-L batch fermentation with 
various propanal amounts (0.8, 1.6, 3.1, and 3.9 g/L) and up to 4 
times of propanal additions as an inducer in 6 hr intervals 

Propanal amount 
(g/L) 

Number of propanal 
additions 

Specific activity' 

0.8 1 - 2 NAD" 

1.6 1 NAD 

1.6 2 0.026 

3.1 1 - 2 NAD 

3.9 1 0.01 

3.9 2 - 4  NAD 

"Activity was measured by oxygraph with propanal as a substrate and 
specific activity was defined as 0.1 ^/mole per minute per mg protein. 

"No activity detected by oxygraph. 

intervals because of the higher overall specific activity. 

Specific activity was 0.021 units for 1.6 g propanal/L added to S. setonii 

culture in stationary phase (62 hr incubation). Culture in late-log phase (48 hr 

incubation), when treated with propanal (1.6 g/L), showed a two-fold increase 

in specific activity (0,05 units). However, it was not significantly different by 

LSD, but this specific activity was the best for 5-L fermentation. In shake-flask 

cultures, the best specific activity was 0.017 units with two propanal additions 
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(1.6 g/L) in a 12 hr interval between propanal additions to stationary phase 

culture. Thus, propanal addition to late-log phase showed better activity than 

stationary phase culture additions. This might be a result of detoxification 

mechanism (68). However, explanation is not simple because the correlation of 

mycelium production and changes in mycelium structure is complex (26). 

Spore vs. viable cell inoculum. No enzyme activity was detected for 

any fermentors inoculated with viable cells, which was performed in an effort 

to reduce lag time. Vegetative cells of S. setonii from shake-flask cultures 

were long filaments versus aerial spores which represent single cells. Aerial 

and substrate mycelium are physiologically different from vegetative cells; 

however, data on metabolic activities of hyphae are not readily available (55). 

Therefore, we concluded that growth from spores might be essential for 

aldehyde oxidase induction. This is similar to citric acid production by 

Aspergillus niger vjhxch requires a spore inoculum (26). 

15-L batch fermentation 

This fermentation was done to correlate 5-L and 50-L batch fermentation 

and specific activity was 0.10 for cell-free extracts after harvest, which was 

two-fold higher than that in 5-L batch fermentation with the same enzyme 

induction pattern. Therefore, the 5-L batch fermentation was reproducible in 

15-L batch fermentation in terms of aldehyde oxidase specific activity. 
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50'L S. setonii batch fermentation 

Control (boiled extract) demonstrated no activity, whereas resuspended 

25 and 40% ammonium sulfate saturation precipitate demonstrated specific 

activities of 0.21 and 0.13 units, respectively. This same cell-free crude 

extract was heat-treated (70°C) for 10 min and it showed positive activity 

(0.46 unit). However, it was not significantly different among specific activities 

by statistical analysis (LSD). A heat treatment (70®C) of cells or cell-free 

extract could provide a simple method for destroying undesirable proteases. 

However, heat-treatment of cells or cell-free extracts from repeated 

fermentation, demonstrated marginal activity. Furthermore, detectable 

aldehyde oxidase activity was not consistently present in propanal induced cells 

(Table 9). 

Subsequent three fermentations with the same procedure demonstrated 

marginal or no activity and results were fluctuating and inconsistent. However, 

the pattern of changes in pH and dissolved oxygen were similar to previous 50-

L batch fermentation. Possibly, propanal concentration based on cell density 

and not working volumes would have helped to stabilize some these differences 

with the range of cell-mass production being 5.5 to 7.0 g/L (wet weight). 

These results suggest that the aldehyde oxidase production by S. setonii was 

not consistent, it has a short half-life in the cells, or that propanal or propionic 

acid was toxic to the bacteria. When examined microscopically, cell 

morphology in 50-L fermentations was less aggregated filaments compared to 
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Table 9. Aldehyde oxidase specific activity of cell-free extracts prepared 
from S. setonii 50-L batch fermentation after a second 1.6 g 
propanal/L medium addition with propanal as the enzyme substrate 

Sample' Specific activity'^ 

1 hr 0.017= 

2 hr 0.165"' 

5 hr 0.042®'' 

6 hr 0.034= 

8 hr 0.185" 

'Time after the second propanal addition. 

"Activity was measured by oxygraph and specific activity was defined as 
0.1 //mole Oj per minute per mg protein. Substrate used was 500 mM 
propanal. Average of duplicate. 

c,d,e,fvaiues with different letter in the column means statistically 
significant at P<0.05 by LSD. 

somewhat extended long filaments aggregation in shake-flask and 800-ml CSR, 

probably due to mechanical shear difference by agitation. However, proper 

agitation was needed to supply dissolved oxygen to fast-growing culture. 

Short or fragmented hyphae are common at the end of fermentation in late 

stationary phase for some Streptomyces (16). S. setonii in continuous stirred 

tanks does fragment more than some Streptomyces (personal observation by 
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Dr. Pometto). Some heat-treated (70®C) extracts showed positive activity but 

results were again fluctuating and inconsistent. Enzyme activity varied from 

0.16 to 0.46 unit for crude cell-free extract and 30% ammonium sulfate 

saturation precipitate, respectively, but values were fluctuating and 

inconsistent. Aldehyde oxidase specific activity was not statistically significant 

{P<0.05) when analyzed by LSD. 

Enzyme cofactors. Because of inconsistent and fluctuating results, 

some metal ions, EDTA (100 mM), and NAD (5 mg) were added to cell-free 

extracts, however, no benefit was observed. 

Temperature effects. Cell-free extracts were evaluated at different 

temperatures (20 to 47®C){Table 10) and the initial rates were higher 

at 42 and 47°C. Relative activity was lower for the extracts held at 42®C for 

30 min than for extracts held for 5 min. Just the opposite result was observed 

for the extract at 47®C. Probably, temperatures tested were adverse to the 

oxygraph system because the proper sample temperature range is specified as 

5 to 40°C in the manual. Also, oxygen probe and membrane permeability 

might be affected by chamber sample temperature. However, relative enzyme 

activity remained the same for the extracts held at 5 or 30 min at other 

temperatures tested. 

In 50-L batch fermentation of S. setonii, temperature was reduced from 

37 to 30®C after the first propanal addition (1.6 g/L) in an effort to stabilize 

maximum aldehyde oxidase intracellular concentrations longer. However, no 
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Table 10. Temperature effect on aldehyde oxidase prepared from S. setonii 
50-L batch fermentation with propanal as the inducer® 

Temperature Relative activity" 

20°C 0 

27°C 0 

32°C 0 

37®C 100 

42®C 190 

42®C (30 mini 134 

47®C 176 

47°C (30 min') 310 

'Enzyme activity was measured by oxygraph with propanal as a substrate 
and specific activity was defined as 0.1 ywmole Oj/min/mg protein. 

"Relative activity compared with activity measured at 37®C as 100% 
(0.87 units). 

"Substrate was added to the enzyme mixture after equilibrating for 30 
min. 
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improved enzyme activity was observed. S. setonii 75Vi2 mycelia storage in 

the coldroom (5®C), after harvest from 50-L fermentation, did demonstrate 

increased enzyme activity (Table 11). Maybe optimum growth temperature 

was needed for detoxification mechanism during fermentation, and intracellular 

protease activity was less active when cells were stored at 5°C. 

Other enzyme substrates. Among enzyme substrates tested, 

131 mM vanillin and 10 mM frans-cinnamaldehyde demonstrated specific 

activities of 0.42 and 0.49 units, respectively, for 80% ammonium sulfate 

saturation supernatant. Also, enzyme activity for hexanal was demonstrated 

(Table 11). Whereas, 18% (w/v) D-glucose, 95% ethanol, 10 mM catechol, 

0.45 mM xanthine and 10 mM phenylacetaldehyde as substrates were 

negative. 

Comparison of propanal and hexanal as substrates. From S. setonii 

50-L batch fermentation, enzyme activity for the extracts taken every 2 hr after 

a first and second propanal addition (1.6 g/L) was determined (Table 11). Peak 

activity for both substrates was 4 hr after first propanal addition to the 

fermentation broth (Fig. 6). Again, aldehyde oxidase activity appeared, 

disappeared then reappeared after storage in the coldroom. Similar aldehyde 

oxidase activity was observed for propanal and hexanal. For most cell-free 

extract propanal illustrated a slightly higher enzyme activity than hexanal with 4 

hr extract demonstrating the highest. 

Peak enzyme activity measurement for crude cell-free extract. From 
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Table 11. Specific activity of aldehyde oxidase produced from S. setonii 50-L 
batch fermentation with propanal and hexanal as the substrates 
and propanal as the inducer' 

Specific activity^ 

Sample" Propanal Hexanal 

control (zero time) 0.383" 0.825" 

2 hr after 1 st addition 0.406"^ 0.488" 

4 hr after 1 st addition 4.89" 3.00" 

6 hr after 1 st addition 0.494" 0.646" 

2 hr after 2nd addition 0.488" 0.381" 

4 hr after 2nd addition 0.27" ND' 

final extract 0.361" 0.787" 

Cold storage final extract® 1.53" 1.54" 

"Total volume of 3.6 ml and 1.0 ml of extract in 0.1 M phosphate buffer 
(pH 7.2) at 37®C. Hydrogen peroxide was not added to the mixture. 

"Sample time before and after propanal addition (1.6 g/L). 

"Activity was measured by oxygraph and specific activity was defined as 
0.1 //mole Oj consumed per min per mg protein. Substrate concentration was 
500 mM for propanal and 0.83 mM for hexanal. 

"'•'Values with different letter represents statistically significant (P<0.05). 

'ND; Not determined. 

"Cells stored in the coldroom for four hours due to the processing time 
for final extract. 
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Figure 6. Change in pH and %02 saturation (Top frame), and aldehyde 
oxidase specific activity (Bottom frame) for 50-L batch 
fermentation of S. setonii 75Vi2 in 0.6% (w/v) yeast extract, 
1.0% (w/v) malt extract medium and 1.6 g propanal/L medium 
was added at 16 and 22 hr incubation 
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S. setonii 50-L fermentation, one liter samples were taken every hour for 

six hours, after the first and second propanal addition (1.6 g/L) to determine 

enzyme activity profile. Enzyme activity exhibited a similar fluctuating pattern 

as observed previously (Table 12) and values were not significantly different 

(P<0.05) from each other when analyzed by LSD. 

Summary of attempted scale-up. Table 13 illustrates specific activity, 

ceil mass, and protein produced in each step through attempted scale-up from 

shake-flask to 50-L batch fermentation. Aldehyde oxidase specific activity and 

total protein production in 50-L batch fermentation were increased to 9- and 

65-fold, respectively, compared with those of shake-flask. Thus, scale-up 

procedure was proper in terms of specific activity and protein production. 

Product Analysis 

HPLC analysis of enzyme reaction mixture for propionic acid 

Reaction mixture from positive oxygraph assay with propanal as the 

substrate was collected and analyzed by HPLC. Also, fermentation broth 

samples taken every hour after the first propanal addition (1.6 g/L) were 

analyzed for propanal conversion to propionic acid. Propionic acid was 

detected by HPLC at 0.46 and 0.89 g/L, 2 hr after the first propanal addition 

(1.6 g/L) and 2 hr after a second propanal addition, respectively. Most reaction 

solutions contained 0.04 to 0.13% (v/v) propionic acid. However, buffer 
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Table 12. Percentage oxygen consumed by cell-free extracts prepared from 
1 -L sample from 50-L batch fermentation of S. setonii with 
propanal as the substrate and the inducer 

Sample %02/min Sample %02/min 

zero 0.94 6 hr/1 0.34 

1 hr/1" 0.88 1 hr/2" 0.38 

2 hr/1 1.57 2 hr/2 0.8 

3 hr/1 1.05 4hr/2 0 

4 hr/1 0.93 6 hr/2 0 

5 hr/1 1.00 final 0.90 

"Hours 

"Hours 

after a first propanal addition (1.6 g/L). 

after a second propanal addition (1.6 g/L). 

solution containing no cell-free extract (control) showed 0.18% (v/v) propionic 

acid which results from autoxidation. This lower propionic acid concentration 

for enzyme reaction mixtures from crude cell-free extract is difficult to explain. 

Longer chained aliphatic aldehydes and acids were not detectable by the HPLC 

column and mobile phase used. These results illustrate some of the difficulties 

associated with aliphatic aldehydes as substrates. 
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Table 13. Summary of aldehyde oxidase production by 5. setonii scale-up 
attempt 

Fermentation Bp. act." Ceil mass (g/L) Totai protein (g)" 

Dry Wet 

shake-flask (1-L) 0.02 ND® ND 0.08 

CSR (800 ml) 0.02 ND 2.5 0.22 

5-L 0.05 1.2 4.7 1.70 

15-L 0.10 1.2 4.6 3.24 

50-L 0.18 1.7 7.0 7.24 

'Specific activity was measured for crude cell-free extracts with propanal 
as a substrate and one unit was defined as 0.1 //mole Oj/min/mg protein. 
Values represent the highest specific activity. 

"Total protein produced based on 40 ml crude cell-free extracts per 1-L 
harvest at the end of fermentation. Protein concentration was measured by the 
method of Lowry et al. (64). 

"Not determined. 

2,4-Dinitrophenylhydrazine assay for aldehyde detection 

The 2,4-dinitrophenylhydrazine assay was investigated in an effort to 

develop a spectrophotometric assay for measuring aldehyde oxidation to 

support the oxygraph and HPLC results. The reaction of aldehydes and 2,4-

dinitrophenylhydrazine produces a yellow to red color (121). Different 

concentrations of propanal solution were scanned from 350 to 520 nm to 
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identify the optimal absorbance that would generate a linear standard curve. 

However, absorbance values at different wavelengths showed no linear 

relationship (Fig. 7). Different compositions were attempted, but they were not 

effective. Also, no variation in pH was observed. This illustrates 2,4-

dinitrophenylhydrazine may not be suitable for quantitative analysis but 

qualitative analysis as in TLC. 

Thin-layer chromatography (TLC) for aldehyde detection 

TLC was used in an effort to support HPLC results and confirm aldehyde 

to acid enzymatic conversions. The R, values for propanal, propionic acid, and 

hexanal standard sample were 0.675, 0.583, and 0.540, respectively. Hexanal 

standard, however, showed four spots and it was difficult to detect on TLC 

plate. Aldehydes were identified by spraying 2,4-dinitrophenylhydrazine 

solution (0.4% [w/v] in 2 N HCI) which gave yellow to red spots and their 

corresponding acids were identified under ultraviolet light (longwave) after 

2',7'-dichlorofluorescein (0.2% Iw/v] in 95% ethanol) was sprayed over the 

plate. However, this procedure also proved ineffective. This chronic detection 

problem stems from aliphatic aldehydes volatility and enzyme reaction solution 

containing low concentrations (30 to 100 ppm) of each compounds. Thus, 

quantitative analysis was not possible in TLC and more sensitive method (e.g., 

gas chromatography) might be needed for detection of corresponding acids 

produced by enzyme. 
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Figure 7. Absorbance of propanal and 2,4-dlnitrophenylhydrazine 
(DNPH) solution at different wavelength (The solution 
contained 0.1 ml of DNPH, 1.0 ml of various amount of 
propanal in 0.1 M phosphate buffer, and 2.0 ml of 95% 
ethanol) 
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Aromatic Aldehyde as an Inducer 

From each fermentation, aldehyde oxidase production pattern was 

inconsistent and not reproducible when propanal was used as the inducer. 

Therefore, fraws-cinnamaldehyde, which is more stable than propanal, was 

evaluated as an aldehyde oxidase inducer. rra/75-Cinnamaldehyde level was 

monitored by UV spectrophotometer at 286 nm for frans-cinnamaldehyde or 

268 nm for its corresponding acid. 

5-L S. setonii batch fermentation 

Shake-flask and 800-ml CSR studies were skipped based on our previous 

findings for enzyme induction with propanal. Aromatic aldehyde would be a 

more stable enzyme inducer than aliphatic aldehyde, if the aldehyde oxidase is 

induced with r/'a/7S-cinnamaldehyde addition in 5-L batch fermentation, and if 

the aldehyde oxidase induced would oxidize aliphatic aldehydes as well as 

aromatic aldehydes. After a 48 hr incubation in 0.6% (w/v) yeast extract and 

1.0% (w/v) malt extract medium, 0.10 g fra/is-cinnamaldehyde/L medium 

(0.01% v/v) was added. Average cell-mass yield, after 72 hr incubation, was 

9.4 g/L (wet weight) and the conversion of all the frans-cinnamaldehyde to 

fra/?s-cinnamic acid was monitored spectrophotometrically at 286 nm. Enzyme 

induction, however, was not improved. Probably aromatic aldehyde like trans-
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cinnamaldehyde is toxic to cells because no growth was observed when trans-

cinnamaldehyde was present prior to inoculation. Also, 50% inhibition was 

reported when frs/js-cinnamaldehyde (70 //g/ml) was added to a 72 hr 

Saccharomyces cerevisiae culture (74). A combination of trans-

cinnamaldehyde (0.2 g/L) and propanal (1.6 g/L) as inducers was also 

evaluated, but no improvement was observed. 

50-L S. setonii batch fermentation 

Since dissolved oxygen, pH, and cell-mass changes correlated between 

15-L and 50-L batch fermentations in previous study, 15-L batch fermentation 

was not performed. When pH was about 7.8 and a reduction in DOj was 

observed, 0.5, 1.0 , or 2.0 g of fra/Js-cinnamaldehyde/L medium was added. 

^/•aA7s-Cinnamaldehyde oxidation was monitored by UV absorbance at 286 nm. 

The advantage of aromatic aldehyde as an inducer is that It is possible to 

monitor the inducer oxidation rapidly which should correspond to enzyme 

induction. 

Bacterial bioconversion of fra/^s-cinnamaldehyde to corresponding acid in 

3 to 4 hours was observed when 0.02 to 0.1 % (w/v) aromatic aldehyde was 

added. However, frans-cinnamaldehyde was not decreased when 0.2% (w/v) 

was added probably due to its toxicity. Ultraviolet absorbance (286 nm) 

initially and after 2 hr incubation was 0.828 and 0.177, respectively, which 

indicated acid production. The aldehyde oxidase induced by trans-
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cinnamaldehyde addition to late-log phase cells in 50-L batch fermentation did 

oxidize propanal (Table 14) and this suggests a wide substrate specificity of 

this enzyme. The heat treatment (70®C) of cell-free extract showed excellent 

results compared with other extracts for both propanal and trans-

cinnamaldehyde as substrates. Crude cell-free extract was active for 2 to 3 

days at 4®C, whereas whole cells lost activity in cold storage {5°C) in 2 or 3 

days. Ammonium sulfate precipitation of aldehyde oxidase extended its shelf-

life to a week when stored at 4®C. It was difficult to deal with S. setonii due 

to inconsistent enzyme induction and intracellular stability in fermentation. 

Stability of bacterial enzyme preparations, however, was extended by freeze-

drying cell-free extract. Like propanal, the frans-cinnamaldehyde treated S. 

setonii fermentation demonstrated inconsistent enzyme induction and recovery. 

Therefore, our efforts changed to S. viridosporus batch fermentation. 

Enzyme Activity for S. viridosporus T7A 

Crawford et al. (24) demonstrated aromatic aldehyde oxidase activity in 

S. viridosporus T7A using 0.15% yeast extract medium in shake-flask studies. 

For our study, the medium used contained 0.6% (w/v) yeast extract and 1.0% 

(w/v) malt extract medium. When pH was about 7.8 and after DOj reduced, 1 

or 2 g vanillin/L was added as an inducer. Vanillin level was monitored by UV 

spectrophotometer at 345 nm or 250 (282) nm for its corresponding acid. 
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Table 14. Specific activity of aldehyde oxidase produced by S. setonii 50-L 
fermentation with rra/7s-cinnamaldehyde (0.2 g/L) as the inducer 

Specific activity' 

Sample Propane! fra#?s-Cinnamaldehyde 

crude extract 0.19 0.34 

0-25% precipitate 0.30 0.31 

70°C heated (10 min) 0.46 0.35 
crude extract 

'Activity was measured by oxygraph and specific activity was defined as 
0.1 //mole O2 consumed per minute per mg protein. Substrate concentration 
was 500 mM propanal or 10 mM frans-clnnamaldehyde. 

Average cell-mass yield of two fermentations was 69 g/L (wet weight) and 

harvested cells were stored in the coldroom. Cell-mass (wet weight) was much 

higher for S. viridosporus due to the production of larger mycelium clumps than 

5. setonii in cell suspension producing visibly large spherical cell-aggregations. 

Crude cell-free extract harvested after two vanillin treatments (1 g/L) 

demonstrated excellent aldehyde oxidase activity for propanal (Table 15), 

whereas boiled extracts were negative. Specific activity was highest for 80% 

ammonium sulfate saturation supernatant (2.27 units). However, it was not 

significantly different (P<0.05) among different ammonium sulfate % 
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saturation fractions by LSD. When hexanal and fra/75-cinnamaldehyde were 

used as substrates, specific activities of 5.6 and 0.49 units were observed, 

respectively. Two fermentations with vanillin addition (2 g/L) were performed 

and activity values were inconsistent even those from the same ammonium 

sulfate fractions (data not shown). Oxygraph measurements of enzyme activity 

were not always conclusive, because of the pervasive presence of catalase in 

every ammonium sulfate fraction, even after treatment with 3% HjOj. 

Hydrogen peroxide was added to enzyme reaction mixture to 

fatigue catalase that catalyzes H2O2 to Oj and HjO. This treatment Improved 

aldehyde oxidase assay 4.4-fold when measured by oxygraph. Aldehyde 

oxidase oxygraph assay is based on oxygen consumption measurement. 

However, HjOj is a co-produced of the enzyme reaction. So, as O2 was 

consumed by aldehyde oxidase, an equlmolar amount of Oj was produced by 

catalase and H2O2. Therefore, catalase contamination was a reoccurring 

problem for all our oxygraph measurement. The molecular weight range of 

bacrterial catalases is reported as 220 to 350 IcDa (101). 

Temperature effect. S. viridosporus T7A mycelia storage In the 

coldroom (5°C) up to three days after harvest from 50-L fermentation did 

slowly increase enzyme activity. Residual vanillin was present and the lower 

temperature might decrease cell activity and Intracellular enzyme degradation 

by proteases. 
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Table 15. Purification of aldehyde oxidase produced by S. viridosporus 50-L 
fermentation with vanillin as the inducer 

Ammonium sulfate' Specific activity" Purification (fold) 

original 0.67 1 

31-40P 1.20 1.8 

31-40S 1.12 1.7 

71-BOS 2.27 3.4 

•Ammonium sulfate saturation fraction evaluated were supernatant (S) 
and precipitate (P). 

"One unit was defined as 0.1 //mole Oj consumed per minute per mg 
protein. The reaction mixture contained 3% H2O2, 0.1 M phosphate buffer, and 
total volume was 3.6 ml at 37°C. After HjOj consumption by catalase, 500 
mM propanal was added. 

50-L S. viridosporus batch fermentation 

Enzyme production was more consistent for S. viridosporus than for S. 

setonii. Changes in pH and %02 saturation during fermentation are illustrated 

in Fig. 8. Aldehyde oxidase activity was 4.05 units for cell-free extract from 

the fermentation with agitation speed of 200 rpm and upon microscopic 

examination, cell morphology exhibited about 1 mm diameter. In the next 

fermentation, agitation speed was increased to 250 rpm in an effort to supply 

more dissolved oxygen. However, aldehyde oxidase activity decreased to 2,33 
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Figure 8. Changes in pH and %02 saturation for 50-L batch fermentation of 
S. viridosporus using vanillin (2 g/L) as an inducer added at 42 and 
45 hr incubation 
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units for cell-free extract and observed cell aggregation size was about < 0.5 

mm. This suggested that cell aggregation size was an important factor in 

fermentation, because a larger cell aggregation size gave better enzyme 

activity. Cell aggregation size was controlled by inoculum size and agitation 

speed by using 3 stock slants of spores and 200 rpm, respectively. 

Enzyme stability was better when it was cold stored or freeze-dried. 

Also, whole cells showed positive activity even after four weeks of coldroom 

storage (5°C), suggesting a longer intracellular half-life for the aldehyde 

oxidase for S. viridosporus, compared with S. setonii. The resuspended freeze-

dried crude extract was also quite stable (Table 16) up to 24 days and specific 

activity remained about the same as original. Thus, freeze-drying could be used 

as a good preservative method. 

Table 17 presents enzyme purification with ammonium sulfate for S. 

viridosporus cell-free extracts. The specific activity was 71 units for 70% 

ammonium sulfate saturation supernatant and 40 units for 30% ammonium 

sulfate saturation supernatant. However, propionic acid was not detected by 

HPLC. The amount of propanal converted to propionic acid by these extracts 

were possibly too small to be detected by HPLC. On the other hand, propionic 

acid was detected for the 30% ammonium sulfate saturation precipitate, 

whereas boiled 30% ammonium sulfate saturation precipitate and supernatant 

showed no propionic acid peak. This product detection by HPLC confirms 

aldehyde oxidase activity (Fig. 9). 
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Table 16. Storage stability of freeze-dried crude cell-free extract produced by 
S. viridosporus 50-L fermentation with vanillin as an inducer and 
propanal as the substrate' 

Days stored at 4*'C Specific activity" Relative activity' 

0 13.4 100 

3 13.9 104 

14 12.0 90 

18 14.8 110 

24 14.0 104 

'The freeze-dried crude extract was prepared from whole cells stored for 
8 days in a coldroom. 

"Activity was measured by oxygraph and one unit was defined as 0.1 
/ymole O2 consumed per minute per mg protein. Propanal used was at 500 mM. 

®The values were compared to the freeze-dried extract at 0 day as 100%. 

Total activity and % activity recovery of 305 (supernatant) and 70S were 

greater than original cell-free extract (Table 17). The discrepancy of the 

oxygraph might be due to the presence of catalase activity which was detected 

in all ammonium sulfate fraction. Catalase has a wide pH optimum range (3 to 

9) and it is difficult to remove. Many known catalase inhibitors (e.g., azide, 

pyrazole), will only partially inactivate the enzyme (52). Also, cyanide, a 
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Table 17. Ammonium sulfate fractionation of aldehyde oxidase produced by 
S. viridosporus cell-free extract prepared from 50-L fermentation 
with vanillin as an inducer and propanal as the substrate' 

AS" Vol. Prot." Total Total Spec. % Act. Purif. 

% (ml) (mg/ml) prot. activity act. rec." (fold) 

0 100 5.28 528 3722 7.05 100 1.0 

0-30S 106 1.94 206 8343 40.5 224 5.7 

51-70S 118 0.74 87 6177 71.0 166 10 

0-30P" 3.5 5.60 19.6 425 21.7 11 3.1 

The values were substracted by boiled extract background. Specific 
activity was defined as 0.1 //mole O2 per min per mg protein. Original extract 
was from the whole cells stored for 8 days at 5®C, freeze-dried, then stored for 
7 weeks at 4°C. For enzyme assay, 20 mg was resuspended in 1 ml of 0.1 M 
phosphate buffer. Vanillin {0.2% w/v) was used as an inducer and 1 M 
propanal as a substrate. 

"Ammonium sulfate (AS) % saturation with S for supernatant and P for 
precipitate. 

"Protein determined by the method of Lowry et al. (64). 

"Percentage activity recovered. 

'Propionic acid production was confirmed by HPLC (Fig. 9). 
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catalase inhibitor, was not tested because it is also an aldehyde oxidase 

inhibitor (7, 13). 

A rapid assay for aldehyde oxidase activity such as the oxygraph Is 

needed to monitor enzyme purification and optimization. Furthermore, propanal 

chemical autoxidation could also be a problem. Therefore, a more stable 

substrate to follow enzyme activity was needed, and vanillin was selected. The 

advantage of using aromatic aldehyde was that bioconversion of vanillin to 

vanillic acid can be monitored spectrophotometrically at 345 nm (88), which 

can be used to support oxygraphic measurement. 

Comparison of Enzyme Activity and Residual Vanillin 

This time aldehyde oxidase activity was detected in all ammonium sulfate 

fractions by oxygraph and by residual vanillin-concentration 

spectrophotometrically, which correlated enzyme activity with substrate 

bioconversion (Table 18). The best results were for the 30 and 40% 

ammonium sulfate saturation precipitate with 75% vanillin converted to vanillic 

acid as determined spectrophotometrically. Specific activity determined by 

oxygraph showed some variation compared with residual vanillin concentration. 

However, in the future, oxygraphic assay with spectrophotometric residual-

substrate measurement can provide rapid enzyme activity measurements, and 

would be the preferred method as an aldehyde oxidase assay using aromatic 



www.manaraa.com

Table 18. Ammonium sulfate fractionation of aldehyde oxidase produced by S. viridosporus 50-L 
fermentation with vanillin as the substrate and an inducer^ 

AS" 
<%» 

Volume 
(mil 

Protein 
(mg/ml) 

Total 
protein 

Total 
activity 

Specific 
activity" 

% Activity 
recovery 

Purification 
(fold) 

Vanillin" 
(mg/ml) 

% Conversion* 

0 200 14.0 2800 14 0.005 100 1.0 24.1 21 

30S 212 12.8 2714 ND' ND ND ND 21.8 29 

408 221 11.3 2492 ND ND ND ND 24.5 20 

508 224 7.21 1615 NO ND ND ND 26.6 16 

60S 226 6.64 1601 120 0.08 857 16 23.3 24 

70S 229 4.9 1134 147 0.13 1050 26 17.3 43 

SOS 232 4.55 1056 444 0.42 3170 84 21.1 31 

SOP 15 7.34 110 53 0.48 377 96 7.54 75 

40P 5 4.93 24.7 4 0.16 28 32 7.54 75 

50P 5 1.50 7.5 ND ND ND ND 14.3 53 

60P 5 3.71 18.6 ND ND ND ND 22.2 27 

70P 4 1.68 6.72 ND ND ND ND 21.1 31 

SOP 4 1.66 6.64 ND ND ND ND 24.5 20 

•Vanillin (40 mg/ml) was added to the reaction mixture and about 25 mg/ml of freeze-dried extract was resuspended in 0.1 M phosphate buffer. Zero 
control contained 30.6 mg of vanillin per ml and the background was substracted. 

"Ammonium sulfate (AS) % saturation with S for supernatant and P for precipitate. AS fractionation was performed in the sequence presented. 

"Enzyme activity was measured by oxygraph and one unit was defined as 0.1 /miole 0}/min/mg protein. 

'Residual vanillin concentration in mg/ml after enzyme reaction for oxygraph analysis was determined spectrophotometrically at 345 nm. Initial vanillin 
concentration was 40 mg/ml. 

'Percentage vanillin converted to vanillic acid. 

'NO: not determined due to the background was greater than these data. 
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aldehyde as a substrate. 

Another set of measurement was done for the residual vanillin from a 

cell-free extract to confirm previous results (Table 19). Low vanillin 

concentration correlated with good enzyme activity for the reaction mixtures 

from 25 to 45% ammonium sulfate saturation as expected. Therefore, the 

combination of oxygraphic and spectrophotometric measurement could be a 

good aldehyde oxidase assays. 

Polyacrylamide Gel Electrophoresis (PAGE) 

On nondenaturing gel, 30 to 50 //g of crude cell-free extract, heat-treated 

(70°C) for 5 and 10 min, and 45% ammonium sulfate saturation precipitate 

was loaded into each well. All these proteins demonstrated positive enzyme 

activity, with vanillin as substrate as indicated by visual brown color formation 

on zymogram with native-PAGE (Fig. 10). This confirms the presence of 

aldehyde oxidase In these extracts. On the other hand, boiled extract (control) 

and other 25 or 45% ammonium sulfate saturation supernatant did not show 

detectable color formation. Figure 11 illustrates the protein patterns as 

determined by SDS-PAGE for S. viridosporus cell-free extracts and different 

ammonium sulfate fractions. Crude cell-free extract, 25 and 45% ammonium 

sulfate saturation supernatant showed similar protein patterns (lanes 1, 2, and 

3). Some additional proteins appeared in 25% ammonium sulfate saturation 
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Table 19. Residual vanillin concentration after enzyme reaction for cell-free 
extracts prepared by S. viridosporus 50-L fermentation with 
vanillin as the substrate and an inducer 

Extract' Vanillin (mg/ml)" % Conversion'^ 

zero (without stirring) 7.60 0 

inactivated enzyme 7.25 0 

0 6.77 7 

0- 25P 7.42 0 

25 - 45P 0.51 93 

"Enzyme extracts were freeze-dried, stored In a coldroom and 25 mg/ml 
was resuspended in 0.1 M phosphate buffer from various ammonium sulfate 
precipitation. P and S are for precipitate and supernatant, respectively. 

"Initial vanillin concentration was 7.80 mg/ml (0.2 ml 1 M vanillin, 100//I 
enzyme and 3.6 ml buffer) and residual vanillin was determined by absorbance 
at 345 nm spectrophotometrically. Average of duplicates. 

^Percentage vanillin converted to vanillic acid by residual vanillin 
measurement at 345 nm spectrophotometrically. 

precipitate (lane 4) which were not present in 45% ammonium sulfate 

saturation precipitate (lane 5). Just a few protein bands were detected in heat-

treated (70°C) cell-free extracts for 10 min (lane 6 and 7). Thus, heat 

treatment (70°C) could be an excellent procedure to remove some undesirable 

proteins which precipitated after heat treatment. 
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Figure 10. Nondenaturing gel electrophoresis to detect aldehyde oxidase 
activity. A. active extracts B. boiled extracts 1; crude cell-free 
extract, 2 and 3; heat-treated (70°C) for 5 and 10 min, 
respectively, 4; 45P® ("Ammonium sulfate with P for precipitate) 
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Figure 11. Polyacrylamide gel electrophoresis (PAGE) A. SDS-PAGE 1; crude 
cell-free extract 2; 25S' 3; 45S'' 4; 25P'' 5; 45P'' 6, 7; heat-
treated (70°C) for 10 min. B. SDS-PAGE 1, 2; extracts from 
positive enzyme activity bands on nondenaturing gel ("Ammonium 
sulfate saturation with S for supernatant and P for precipitate) 
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The protein bands which demonstrated positive enzyme activity on 

nondenaturing gel were cut from the gel, frozen, and extracted in phosphate 

buffer, then ran on SDS-PAGE (Fig. lib). Two broad protein bands were 

detected near molecular marker of 20 and 55 kDa. These were similar to those 

observed in heat-treated {70°C) extract (Fig. 11 a; lanes 6 and 7). About 50% 

of the proteins in crude cell-free extract as determined by the method of Lowry 

et al. (64) was denatured by heat-treated (70®) for 10 min. These data 

suggest that aldehyde oxidase has a molecular weight range of 20 to 55 kDa, 

and possibly could be a dimer with the complete enzyme being the sum of both 

bands (about 75 kDa). Molecular weight from animal sources varies from 222 

to 348 kDa for bovine liver (15) and guinea pig (124), respectively. 

Mukund and Adams (77) reported that hyperthermophilic aldehyde 

oxidase from Pyrococcos furiosus had a molecular weight of 80 and 90 kDa by 

SDS-PAGE and gel filtration, respectively. Also, Deobald and Crawford (29) 

reported that for the S. viridosporus T7A, aromatic aldehyde oxidase had a 

molecular weight of 80 kDa as determined by gel filtration. This correlates to 

the sum of our two bands of 20 and 55 kDa. 
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CONCLUSIONS AND RECOMMENDATIONS 

Aldehyde oxidase production from 5. setonii 75VI2 was initiated in 2-L 

flask and scaled-up via 800-ml GSR, 5-L and 15-L to 50-L batch fermentations. 

For S. setonii, enzyme induction with propanal and fra/js-cinnamaldehyde was 

inconsistent and not reproducible. S. viridosporus T7A illustrated more 

consistent enzyme activity when vanillin was used as an inducer. However, 

specific activities were not significantly different (P<0.05) among different 

ammonium sulfate percentage saturation fractions when analyzed by LSD for 

both S. setonii and S. viridosporus. 

It is recommended to use aromatic aldehydes when possible as enzyme 

inducers. Aromatic aldehydes are more stable and their corresponding 

oxidation to aromatic acid is easily monitored spectrophotometrically. A first 

inducer addition (0.2% [w/v]) at late-log phase and a second addition after 6 hr 

more incubation are needed for proper enzyme induction in 50-L S. viridosporus 

fermentation. Spore inoculum was essential for enzyme induction and late-log 

phase of the culture was determined by pH 7.8 and dissolved oxygen. 

Enzyme induction and half-life were inconsistent in the bacteria. 

Therefore, bacterial mutants enhanced in intracellular aldehyde oxidase stability 

with increased concentration are needed. 

Aldehyde oxidase activity was continuously detected by oxygraph in 
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each scale-up step, which illustrated that enzyme activity was reproducible. 

The previous works by other researchers were performed in shake-flask. This 

study was the first reported scale-up to 50-L batch fermentation. Also, this 

was the first time that aldehyde oxidase was detected in S. setonii. 

The average enzyme peak activity was observed when harvested cells 

were stored in coldroom at 5®C for 2 hr and shelf-life was extended when 

crude cell-free extract was freeze-dried. Catalase presence was a problem for 

enzyme assays. However, catalase addition with aldehyde oxidase will be 

essential for removing HjOj from soybean products treated with this enzyme to 

remove off-flavors. Oxygraphic and spectrophotometric methods with vanillin 

were good enzyme assays. However, additional quick and reliable aldehyde 

oxidase assays are needed. Autoxidation and low water solubility of medium-

chain aldehydes seem to be the major problems. Reported aldehyde oxidase 

assays were mainly spectrophotometric methods and compounds other than 

molecular oxygen were used as an electron acceptor |32, 56). Furthermore, 

most researchers used other substrates than aldehydes (e.g., purines, 

pyrimidines), probably due to better solubility and less autoxidation than 

aliphatic aldehydes. 

Bacterial aldehyde oxidase produced by Streptomyces species was 

confirmed by organic acid and HjOj production by HPLC and PAGE zymogram, 

respectively. However, more sensitive product analysis is required. Currently, 

25 to 45% ammonium sulfate precipitate was the best fraction and heat 
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treatment (70°C) for 10 min could facilitate enzyme purification. 

Bacterial aldehyde oxidase is a smaller enzyme (80-90 kDa) than those 

previously reported from animal sources (220-350 kDa). Aldehydes bound to 

soy protein were oxidized much slower rate than free aldehydes by aldehyde 

oxidase (112) or aldehyde dehydrogenase (20) from animal source because 

aldehydes were buried or trapped in soy proteins that the enzyme can't reach 

(20). This suggests that it would potentially outperform these larger enzyme in 

soy off-flavor reduction because of the competition for off-flavor bindings to 

the two major soy proteins (160 and 320 kDa). 

Further purification steps (e.g., ion-exchange, gel filtration, or affinity 

chromatography) would be desirable for enzyme kinetics study to determine its 

practical use in removal of some off-flavors. Also, catalase removal would 

greatly enhance enzyme assays and optimizations. Finally, any evaluation of 

off-flavor by the addition of bacterial aldehyde oxidase will require a sensory 

evaluation of treated products. Soybeans contain high quality protein with 

anticancer properties. However, human consumption is limited due to some 

off-flavors. Enzymatic off-flavor removal could be one method to expand 

soybean utilization in human foods. 

Recommended Research Plan Modifications 

Followings are some modifications I would do if I started this research all 

over again. 
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Fermentation. The age of each culture's stock slants needs to be 

controlled strictly for Inoculum preparation, based on specific culture age for 

homogeneous spores preparations. Inducer addition to the cells in late-log 

phase looks appropriate for the enzyme induction. Concentration of inducer 

addition should be proportional to wet cell-mass/L medium rather than medium 

volume. 

Scale-up procedure would be in three steps: shake-flask, 5-L, and 50-L 

batch fermentation. Initial enzyme induction will be done in shake-flask study 

and the cell growth curve with pH and dissolved oxygen change will be 

determined in 5-L batch fermentation. Enzyme activity change during 

fermentation with inducer addition would be monitored throughout the 

fermentation. Also, different aeration and agitation rates are worth testing 

because dissolved oxygen and cell aggregation size were important factors for 

enzyme activity. All crude cell-free extracts should be stored frozen and freeze-

dried until proper enzyme assays are developed. 

Also, medium modification might be effective for enzyme induction. 

Different amount of yeast extract (e.g., 0.1 to 0.6% [w/v]) could be used for 

fermentations to determine the best enzyme activity. All parameters will be 

tested in 5-L batch fermentation and key parameters confirmed in 5-L 

fermentation would be followed in 50-L batch fermentation for reproducible 

enzyme activity and for large-scale enzyme production. 

Enzyme assay. A reliable and simplified enzyme assay needs to be 
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developed. Oxygraph is easy and quick, but inactivation or removal of catalase 

is essential for accurate aldehyde oxidase assay. 

A further purification step (e.g., ion-exchange, gel filtration, or affinity 

chromatography) is needed to separate aldehyde oxidase from catalase. Once 

this is done, oxygraphic enzyme assay would be more useful than before. 

Currently, vanillin with oxygraph and spectrophotometer assay seem to be OK. 

However, correlation between aliphatic and aromatic aldehydes as substrates 

needs further testing. Maybe other compounds other than aldehyde could be 

used as a model compound that is ideally stable, reliable, readily water-soluble, 

easily detected, easily degraded by enzyme, and correlates well to aldehydes, 

especially hexanal. 

Further purification steps after ammonium sulfate are needed prior to 

PAGE for separation of aldehyde oxidase from catalase to perform enzyme 

kinetics. The optimum temperature and pH for the enzyme activity and stability 

needs to be determined. 

Others. Since aliphatic aldehydes aqueous solubility is a problem, 

reverse-phase HPLC column would be suitable for these aliphatic aldehyde 

detection. At very low concentrations, GC is also needed for propanal or 

hexanal detection. Mutant development by chemical or UV mutagenesis for 

enhanced and stabilized enzyme activity needs to be developed after enzyme 

assay is set up, since aldehyde oxidase induction and activity were inconsistent 

and unstable. 
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